K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz 
=x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2 
=xy(x+y+z)+zx(x+y+z)+yz(y+z) 
=x(y+z)(x+y+z)+yz(y+z) 
=(y+z)(x^2+xy+zx+yz) 
=(x+y)(y+z)(z+x)

t i c k mk nha!!! 565464556756768768787669789789776575656767676945645645654

16 tháng 5 2019

a) \(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\)

\(=\left(y+z\right)\left(xy+yz+zx\right)+x^2y+x^2z+xyz-xyz\)

\(=\left(y+z\right)\left(xy+yz+zx\right)+x^2\left(y+z\right)\)

\(=\left(y+z\right)\left(xy+yz+zx+x^2\right)\)

\(=\left(y+z\right)\left[y\left(x+z\right)+x\left(z+x\right)\right]\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

b) \(\left(x^2+y^2+5\right)^2-4x^2y^2-16xy-16\)

\(=\left(x^2+y^2+5\right)^2-\left(4x^2y^2+16xy+16\right)\)

\(=\left(x^2+y^2+5\right)^2-\left(2xy+4\right)^2\)

\(=\left(x^2+y^2+5-2xy-4\right)\left(x^2+y^2+5+2yx+4\right)\)

\(=\left(x^2+y^2+5-2xy-4\right)\left(x^2+y^2+5+2yx+4\right)\)

16 tháng 5 2019

c)sai đề. 

đặt \(x^2+x+1=t\)

\(\Rightarrow\left(x^2+x+1\right)^2+\left(x^2+x+2\right)-12\)

\(=t^2+t+1-12\)

.........................................

mình sửa đề không biết có đúng hay không nên mình chỉ nêu hướng làm thôi. bạn thông cảm.

d) \(x^2-x-2001.2002\)

\(=x\left(x+2001\right)-2002\left(x+2001\right)\)

\(=\left(x-2002\right)\left(x+2001\right)\)

23 tháng 11 2017

Ta có :

\(1)\left(x^2+y^2-5\right)-4x^2y^2-16xy-16\)

\(=\left(x^2+y^2-5\right)^2-[\left(2xy\right)^2+2.2xy.4+4^2]\)

\(=\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)

\(=\left(x^2+y^2-5-2xy-4\right)\left(x^2+y^2-5+2xy+4\right)\)

\(=\left(x^2+y^2-2xy-9\right)\left(x^2+y^2+2xy-1\right)\)

\(=\left[\left(x-y\right)^2-3^2\right]\left[\left(x+y\right)^2-1\right]\)

\(=\left(x-y+3\right)\left(x-y-3\right)\left(x+y-1\right)\left(x+y+1\right)\)

\(2)x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-z+z-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-z\right)+x^2y^2\left(z-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=\left(y-z\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(x^2y^2-z^2x^2\right)\)

\(=\left(y-z\right)\left(xy-yz\right)\left(xy+yz\right)+\left(z-x\right)\left(xy-zx\right)\left(xy+xz\right)\)

\(=y^2\left(y-z\right)\left(x-z\right)\left(x+z\right)+x^2\left(z-x\right)\left(y-z\right)\left(y+z\right)\)

\(=\left(y-z\right)\left(x-z\right)[y^2\left(x+z\right)-x^2\left(y+z\right)]\)

\(=\left(y-z\right)\left(x-z\right)(y^2x+y^2z-x^2y-x^2z)\)

\(=\left(y-z\right)\left(x-z\right)[(y^2x-x^2y)+(y^2z-x^2z)]\)

\(=\left(y-z\right)\left(x-z\right)[xy(y-x)+z(y^2-x^2)]\)

\(=\left(y-z\right)\left(x-z\right)[xy(y-x)+z(y-x)\left(x+y\right)]\)

\(=\left(y-z\right)\left(x-z\right)(y-x)\left(xy+xz+yz\right)\)

24 tháng 4 2019

b) Dùng phương pháp đặt ẩn phụ:

Đặt y - x = a; z - y = b suy ra \(a+b=y-x+z-y=z-x\)

\(x^2y^2a+y^2z^2b-z^2x^2\left(a+b\right)=\left(x^2y^2a-z^2x^2a\right)+\left(y^2z^2b-z^2x^2b\right)\)

\(=x^2a\left(y^2-z^2\right)+z^2b\left(y^2-x^2\right)=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)+z^2\left(z-y\right)\left(y-x\right)\left(x+y\right)\)

\(=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)-z^2\left(y-z\right)\left(y-x\right)\left(x+y\right)\)

\(=\left(y-x\right)\left(y-z\right)\left[x^2\left(y+z\right)-z^2\left(x+y\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left(x^2y+x^2z-z^2x-z^2y\right)\)

\(=\left(y-x\right)\left(y-z\right)\left[y\left(x^2-z^2\right)+xz\left(x-z\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left[y\left(x-z\right)\left(x+z\right)+xz\left(x-z\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left(x-z\right)\left(xy+yz+zx\right)\)

8 tháng 10 2018

\(a)\)\(\left(x^2+y^2-5\right)^2-4x^2y^2-16xy-16\)

\(=\)\(\left(x^2+y^2-5\right)^2-\left(4x^2y^2+16xy+16\right)\)

\(=\)\(\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)

\(=\)\(\left(x^2-2xy+y^2-5+4\right)\left(x^2+2xy+y^2-5-4\right)\)

\(=\)\(\left[\left(x-y\right)^2-1\right].\left[\left(x+y\right)^2-9\right]\)

\(=\)\(\left(x-y-1\right)\left(x-y+1\right)\left(x+y-9\right)\left(x+y+9\right)\)

Chúc bạn học tốt ~ 

3 tháng 10 2016

x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3

= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)

(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2

=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)

x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)

 

11 tháng 8 2018

Vụ này khoai à nha !

11 tháng 8 2018

\(b,9x^2+90x+225-\left(x-y\right)^2\)

\(=\left(3x+15\right)^2-\left(x-y\right)^2\)

\(=\left(3x+15-x+y\right)\left(3x+15+x-y\right)\)

\(=\left(2x+y+15\right)\left(4x-y+15\right)\)