K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

4 tháng 8 2023

\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)

\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)

\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)

\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)

 

 

 

b: =xy-x-y+1

=x(y-1)-(y-1)

=(x-1)(y-1)

c: =(x-2y)^2-4y

\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)

d: =16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4-x+y)(4+x-y)

11 tháng 10 2021

a: \(x^2-y^2-x-y\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

f: \(x^3-5x^2-5x+1\)

\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+1\right)\)

a: \(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

9 tháng 12 2021

a)x2-2x-4y2-4y

=x2-2x-4y2-4y+1-1

=(x2-2x+1)-(4y2+4y+1)

=(x-1)2-(2y+1)2

=(x-2y-2)(x+2y)

b)2x2+3x-5

=2x2-2x+5x-5

=2x(x-1)+5(x-1)

=(x-1)(2x+5)

 

 

3 tháng 9 2021

a) \(x^2-9+2\left(x+3\right)=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x-3+2\right)=\left(x+3\right)\left(x-1\right)\)

b) \(x^2-10x+25-3\left(x-5\right)=\left(x-5\right)^2-3\left(x-5\right)=\left(x-5\right)\left(x-5-3\right)=\left(x-5\right)\left(x-8\right)\)

c) \(x^3-4x^2+3x=x\left(x^2-4x+3\right)=x\left(x-1\right)\left(x-3\right)\)

1 tháng 10 2021

`a)x^3-8x^2+16x`

`=x(x^2-8x+16)`

`=x(x-4)^2`

`b)x^2+4y^2+2x-4y-4xy-24`

`=(x-2y)^2+2(x-2y)-24`

`=(x-2y)^2-4(x-2y)+6(x-2y)-24`

`=(x-2y-4)(x-2y+6)`

`c)x^4+x^3-x^2-2x-2`

`=x^4-2x^2+x^3-2x+x^2-2`

`=x^2(x^2-2)+x(x^2-2)+x^2-2`

`=(x^2-2)(x^2+x+1)`

26 tháng 10 2021

a: \(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(2x+3\right)\left(x^2+1\right)\)

b: \(=\left(x-4\right)\left(x+3\right)\)

e: =(x+3)(x-2)

26 tháng 10 2021

a) \(=x^2\left(2x+3\right)+\left(2x+3\right)=\left(2x+3\right)\left(x^2+1\right)\)

b) \(=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+3\right)\)

c) \(=\left(2x\right)^2-\left(x^2+1\right)^2=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\)

d) \(=4xy\left(y-3x+2\right)\)

e) \(=x\left(x-2\right)+3\left(x-2\right)=\left(x-2\right)\left(x+3\right)\)

f) \(=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-4z^2\right]=x\left(x+y-2z\right)\left(x+y+2z\right)\)

g) \(=x\left(x^2-2xy+y^2-25\right)=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\)

h) \(=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)

i) \(=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)=\left(x-3\right)^2\left(x+3\right)\)

 Bài 1 (2,0 điểm). Thực hiện các phép tính:a) 2x2(3x – 5). b) (12x3y + 10x2y) : 2x2y.                                                               Bài 2 (1,5 điểm). Phân tích đa thức thành nhân tử:a) x2y + xy2. b) x2 – 2x + 1 – 4y2. c) x2 – 5x + 4.Bài 3 (1,0 điểm). Tìm x biết:a) x2 – x(x – 3) – 6 = 0. b) 5(x + 2) – x2 – 2x =Bài 5 (3,5 điểm). Cho °ABC, A= 90. Vẽ AH ^ BC tại H. Biết AB = 15cm, BC = 25cm.a) Tính AC và diện tích °ABC.b) Từ H vẽ HM ^ AB tại M,...
Đọc tiếp

 Bài 1 (2,0 điểm). Thực hiện các phép tính:

a) 2x2(3x – 5). b) (12x3y + 10x2y) : 2x2y.                                                               

Bài 2 (1,5 điểm). Phân tích đa thức thành nhân tử:

a) x2y + xy2. b) x2 – 2x + 1 – 4y2. c) x2 – 5x + 4.

Bài 3 (1,0 điểm). Tìm x biết:

a) x2 – x(x – 3) – 6 = 0. b) 5(x + 2) – x2 – 2x =

Bài 5 (3,5 điểm). Cho °ABC, A= 90. Vẽ AH ^ BC tại H. Biết AB = 15cm, BC = 25cm.

a) Tính AC và diện tích °ABC.

b) Từ H vẽ HM ^ AB tại M, HN ^ AC tại N. Chứng minh AMHN là hình chữ nhật.

c) Trên tia đối của tia AC lấy điểm D sao cho AD = AN. Chứng minh tứ giác ADMH là hình bình hành.

d) Gọi K là điểm đối xứng của B qua A. Gọi I, E lần luợt là trung điểm của AH và BH. Chứng minh CI ^ HK.

 

3
28 tháng 12 2021

mn giúp e ik mn

 

28 tháng 12 2021

\(a\text{)}x^2y+xy^2=xy\left(x+y\right)\)

\(b\text{)}x^2-2x+1=\left(x-1\right)^2\)

\(c\text{)}x^2-5x+4=\left(x-1\right)\left(x-4\right)\)