K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

\(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)

\(=\left(2x^4+2x^2+1\right)\left(4x^4-2x^2+1\right)\)

\(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)

\(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)

a) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

b) \(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)

c) \(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)

d) \(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)

25 tháng 5 2023

x⁸ + x⁴ + 1

= x⁸ + 2x⁴ + 1 - x⁴

= (x⁴ + 1)² - x⁴

= (x⁴ + 1)² - (x²)²

= (x⁴ + 1 + x²)(x⁴ + 1 - x²)

= (x⁴ + x² + 1)(x⁴ - x² + 1)

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`

\(\dfrac{2x^5+x^4+3x^3-4x^2-14x+m+1}{x^2-2}\)

\(=\dfrac{2x^5-4x^3+x^4-2x^2+7x^3-14x-2x^2+4+m-3}{x^2-2}\)

\(=2x^2+x^2+7x-2+\dfrac{m-3}{x^2-2}\)

Đây là phép chia hết khi m-3=0

=>m=3

2 tháng 8 2023

\(a,36-4x^2+20xy-25y^2\\ =36-\left(4x^2-20xy+25y^2\right)\\ =6^2-\left[\left(2x\right)^2-2.2x.5y+\left(5y\right)^2\right]\\ =6^2-\left(2x-5y\right)^2\\ =\left[6-\left(2x-5y\right)\right]\left[6+\left(2x-5y\right)\right]\\ =\left(6-2x+5y\right).\left(6+2x-5y\right)\)

2 tháng 8 2023

a/

\(=6^2-\left[\left(2x\right)^2-2.2x.5y+\left(5y\right)^2\right]=\)

\(6^2-\left(2x-5y\right)^2=\left[6-\left(2x-5y\right)\right].\left[6+\left(2x-5y\right)\right]\)

 

 

24 tháng 4 2022

giúp em ạ

 

24 tháng 4 2022

a) A(x) = 2x3 + 5 + x2 - 3x - 5x3 - 4

            = 2x- 5x3  + x2 - 3x + 5 - 4

            = -3x3 + x2 - 3x + 1

    B(x) = -3x4 - x3 + 2x+ 2x + x4 - 4 - x2

            = -3x+ x4 - x3 + 2x- x+ 2x - 4

            = -2x4 - x3 + x2 + 2x - 4

b) 

H(x) = A(x) - B(x)

H(x) = (-3x3 + x2 - 3x + 1) - (-2x4 - x3 + x2 + 2x - 4)

        = -3x3 + x2 - 3x + 1 + 2x4 + x3 - x2 - 2x + 4

        = 2x4 - 3x+ x3 + x2 - x - 3x - 2x + 1 + 4

        = 2x4 - 2x3 -5x + 5

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

10 tháng 1 2017

Thay x = -1 và đa thức, ta có:

(-1)2 + (-1)4 + (-1)6 + … + (-1)100 = Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vậy giá trị đa thức bằng 50 tại x = -1.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có:

(2x – 3) . (x2 – 5x + 1)

= 2x. (x2 – 5x + 1)  + (-3). (x2 – 5x + 1)

= 2x . x2 + 2x . (-5x) + 2x . 1 + (-3).x2 + (-3).(-5x) + (-3). 1

= 2x3 + (-10x2 ) + 2x + (-3x2) + 15x + (-3)

= 2x3 + (-10x2 + -3x2) + (2x + 15x) + (-3)