K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

a,Từ giả thiết ta có

(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2

=(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

Đặt x2+y2+z2=a

xy+yz+zx=b

=>(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

=a(a+2b)+b2

=a2+2ab+b2

=(a+b)2

=(x2+y2+z2+xy+yz+zx)2

câu b hơi dài mình gửi sau nhé

6 tháng 8 2017

Ta có: 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4

Gọi x^4+y^4+z^4=a

x^2+y^2+z^2=b

x+y+z=c

=>2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4=2a-b^2-2bc^2+c^4

=2a-2b^2+b^2-2bc^2+c^4

=2(a-b^2)+(b+c^2)^2

Ta có

2(a-b2)=2[x^4+y^4+z^4-(x^2+y^2+z^2)2]

=2[x^4+y^4+z^4-x^4-y^4-z^4-2x2y2-2y2z2-2z2x2]

=2.(-2)(x2y2+y2z2+z2x2)

=-4(x2y2+y2z2+z2x2)

Lại có

(b+c^2)^2

=[(x^2+y^2+z^2)+(x+y+z)2]2

=[(x^2+y^2+z^2)-(x^2+y^2+z^2)-2(xy+yz+zx)]2

=4(xy+yz+zx)2

=>2(a-b^2)+(b+c^2)^2

=-4(x2y2+y2z2+z2x2)+4(xy+yz+zx)2

=8xyz(x+y+z)

17 tháng 12 2023

a: \(2x^2+3xy-14y^2\)

\(=2x^2+7xy-4xy-14y^2\)

\(=\left(2x^2+7xy\right)-\left(4xy+14y^2\right)\)

\(=x\left(2x+7y\right)-2y\left(2x+7y\right)\)

\(=\left(2x+7y\right)\left(x-2y\right)\)

b: \(\left(x-7\right)\left(x-5\right)\left(x-3\right)\left(x-1\right)+7\)

\(=\left(x-7\right)\left(x-1\right)\left(x-5\right)\left(x-3\right)+7\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)+7\)

\(=\left(x^2-8x\right)^2+15\left(x^2-8x\right)+7\left(x^2-8x\right)+105+7\)

\(=\left(x^2-8x\right)^2+22\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)^2+8\left(x^2-8x\right)+14\left(x^2-8x\right)+112\)

\(=\left(x^2-8x\right)\left(x^2-8x+8\right)+14\left(x^2-8x+8\right)\)

\(=\left(x^2-8x+8\right)\left(x^2-8x+14\right)\)

c: \(\left(x-3\right)^2+\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)^2+2\left(x-3\right)\left(3x-1\right)-\left(x-3\right)\left(3x-1\right)-2\left(3x-1\right)^2\)

\(=\left(x-3\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]-\left(3x-1\right)\left[\left(x-3\right)+2\left(3x-1\right)\right]\)

\(=\left(x-3+6x-2\right)\left(x-3-3x+1\right)\)

\(=\left(7x-5\right)\left(-2x-2\right)\)

\(=-2\left(x+1\right)\left(7x-5\right)\)

d: \(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=x^2y-xy^2+y^2z-yz^2+zx\left(z-x\right)\)

\(=\left(x^2y-yz^2\right)-\left(xy^2-y^2z\right)+xz\left(z-x\right)\)

\(=y\left(x^2-z^2\right)-y^2\left(x-z\right)-xz\left(x-z\right)\)

\(=y\cdot\left(x-z\right)\left(x+z\right)-\left(x-z\right)\left(y^2+xz\right)\)

\(=\left(x-z\right)\left(xy+zy-y^2-xz\right)\)

\(=\left(x-z\right)\left[\left(xy-y^2\right)+\left(zy-zx\right)\right]\)

\(=\left(x-z\right)\left[y\cdot\left(x-y\right)-z\left(x-y\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

16 tháng 9 2019

\(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)

\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2\)

\(=xy^2-xz^2+yz^2-x^2y+zx^2-zy^2-xyz+xyz\)

\(=\left(yz^2-xz^2-xyz+x^2z\right)-\left(zy^2-xyz-xy^2+x^2y\right)\)

\(=z\left(yz-xz-xy+x^2\right)-y\left(zy-xz-xy+x^2\right)\)

\(=\left(z-y\right)\left(yz-xz-xy+x^2\right)\)

\(=\left(z-y\right)\left[y\left(z-x\right)-x\left(z-x\right)\right]\)

\(=\left(z-y\right)\left(y-x\right)\left(z-x\right)\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

2 tháng 7 2021

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x) 

25 tháng 9 2018

a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)

\(=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)

\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)

\(=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4\)\

\(=\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)

\(=\left(x^2+5ax+5a^2\right)^2\)

b) Đặt \(a=x^2+y^2+z^2\);     \(b=xy+yz+xz\)

\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)

\(=a\left(a+2b\right)+b^2\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)

24 tháng 9 2019

a) \left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4(x+a)(x+2a)(x+3a)(x+4a)+a4

=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4=[(x+a)(x+4a)]⋅[(x+2a)(x+3a)]+a4

=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4=(x2+5ax+4a2)(x2+5ax+6a2)+a4

=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4=(x2+5ax+5a2−a2)(x2+5ax+5a2+a2)+a4\

=\left(x^2+5ax+5a^2\right)^2-a^4+a^4=(x2+5ax+5a2)2−a4+a4

=\left(x^2+5ax+5a^2\right)^2=(x2+5ax+5a2)2

b) Đặt a=x^2+y^2+z^2a=x2+y2+z2;     b=xy+yz+xzb=xy+yz+xz

\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2

=a\left(a+2b\right)+b^2=a(a+2b)+b2

=a^2+2ab+b^2=\left(a+b\right)^2=a2+2ab+b2=(a+b)2

=\left(x^2+y^2+z^2+xy+yz+zx\right)^2=(x2+y2+z2+xy+yz+zx)2