K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^4 + y^4=(x^2)^2+(y^2)^2
=(x^2+y^2)^2-2x^2y^2
=(x^2+y^2)^2-(√2xy)^2
=(x^2+y^2-√2 xy)(x^2+y^2+√2 xy)

29 tháng 7 2016

\(a,49.\left(y-4\right)^2-9y^2-36y-36=49\left(y-4\right)^2-9\left(y^2+4y+4\right)\)

\(=49\left(y-4\right)^2-9\left(y+4\right)^2=\left(7y-28\right)^2-\left(3y+12\right)^2\)

\(=\left(7y-28+3y+12\right)\left(7y-28-3y-12\right)\)

\(=\left(10y-16\right)\left(4y-40\right)=8\left(5y-8\right)\left(y-10\right)\)

\(b,xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)

\(=xyz-xy-yz-xz+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(xz-x\right)-\left(yz-y\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-x\left(z-1\right)-y\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-x-y+1\right)\)

\(=\left(z-1\right)\text{[}x\left(y-1\right)-\left(y-1\right)\text{]}\)

\(=\left(z-1\right)\left(y-1\right)\left(x-1\right)\)

25 tháng 7 2016

 =(y+x-6)(y+x-2)

25 tháng 2 2020

Đặt \(x+y=u\)

Biểu thức trở thành \(u^2-8u+12\)

\(=u^2-2u-6u+12\)

\(=u\left(u-2\right)-6\left(u-2\right)\)

\(=\left(u-6\right)\left(u-2\right)\)

Thay ngược trở lại, ta được:

\(\left(x+y\right)^2-8\left(x+y\right)+12=\left(x+y-6\right)\left(x+y-2\right)\)

5 tháng 7 2017

a) \(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

c) \(36-12x+x^2=x^2-12x+36=x^2-6x-6x+36\)

\(=x\left(x-6\right)-6\left(x-6\right)=\left(x-6\right)\left(x-6\right)=\left(x-6\right)^2\)

\(x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(4x^2+12x+9\)

\(=\left(2x\right)^2+2.2x.3+9\)

\(=\left(2x+3\right)^2\)

\(36-12x+x^2\)

\(=6^2-2.6.x+x^2\)

\(=\left(6-x\right)^2\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$

$=(xy-z)(xy+z)(x^2y^2+z^2)$

$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$

$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$

$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$

12 tháng 7 2021

Câu trả lời của cô quá đúng luôn đấy

12 tháng 7 2021

undefined

a) Ta có: \(a^3y^3+125\)

\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)

b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)

\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)

\(=\left(2x-y\right)^3\)

27 tháng 7 2021

Trả lời:

1, 15x + 15y = 15 ( x + y )

2, 8x - 12y = 4 ( 2x - 3y )

3, xy - x = x ( y - 1 )

4, x2 + x = x ( x + 1 )

5, 3x2y - 8xy2 = xy ( 3x - 8y )

6, 6x - 12xy - 18x2 = 6x ( 1 - 2y - 3x )

27 tháng 7 2021

1) 15x + 15y = 15(x + y)

2) 8x - 12y = 4(2x - 3y)

3) xy - x = x(y - 1)

4) x2 + x = x(x + 1) 

5) 3x2y - 8xy2 = xy(3x - 8y)

6) 6x - 12xy - 18x2 = 6x(1 - 2y - 3x) 

24 tháng 8 2023

\(\left(x-y\right)^3-\left(x+y\right)^3\\ =\left(x-y-x-y\right)\left(\left(x-y\right)^2+\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right)\\ =-2y\left(x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2\right)\\ =-2y\left(3x^2+y^2\right)\)

24 tháng 8 2023

Các chổ này chị dùng ngoặc vuông nha 

24 tháng 8 2023

\(\left(x-y\right)^3+\left(x+y\right)^3\\ =\left(x-y+x+y\right)\left(\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right)\\ =2x\left(x^2-2xy+y^2-\left(x^2-y^2\right)+x^2+2xy+y^2\right)\\ =2x\left(x^2-2xy+y^2-x^2+y^2+x^2+2xy+y^2\right)\\ =2x\left(x^2+3y^2\right)\)

24 tháng 8 2023

\(\left(x-y\right)^3+\left(x+y\right)^3\)

\(=\left(x-y+x+y\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\right]\)

\(=2x\left(x^2-2xy+y^2-x^2+y^2+x^2+2xy+y^2\right)\)

\(=2x\left(x^2+3y^2\right)\)