\(4y\left(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

a, 4y(x-1)-(1-x)

=(x-1)(4y+1)

b,3x(z+2)+5(-x-2)

=3x(z+2)-5(x+2)

=(z+2)(3x-5)

2 tháng 11 2016

a)x4+2x3+5x2+4x-12

=(x4+2x3+x2)+(4x2+4x)-12

=(x2+x)2+4(x2+x)-12

Đặt t=x2+x

=t2+4t-12=(t-2)(t+6)

=(x2+x-2)(x2+x+6)

=(x-1)(x+2)(x2+x+6)

b)(x+1)(x+2)(x+3)(x+4)+1

=(x2+5x+4)(x2+5x+6)+1

Đặt x2+5x+4=t

t(t+2)+1=t2+2t+1

=(t+1)2=(x2+5x+4+1)2

=(x2+5x+5)2

c)(x+1)(x+3)(x+5)(x+7)+15

=(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7

t(t+8)+15=(t+3)(t+5)

=(x2+8x+7+3)(x2+8x+7+5)

=(x2+8x+10)(x+2)(x+6)

d)(x+1)(x+2)(x+3)(x+4)-24

=(x2+5x+4)(x2+5x+6)-24

Đặt t=x2+5x+4 

t(t+2)-24=(t-4)(t+6)

=(x2+5x+4-4)(x2+5x+4+6)

=x(x+5)(x2+5x+10)

trong sách 

nâng cao và 

phát triển toán 8

kìa

26 tháng 7 2018

Thì tui mới phải xin cách làm 

4 tháng 11 2016

b)(x2+x+1)(x2+x+2)-12

Đặt t=x2+x+1

t(t+1)-12=t2+t-12

=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)

=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5)

c)(x2+8x+7)(x2+8x+15)+15

Đặt t=x2+8x+7 

t(t+8)+15=t2+8t+15

=(t+3)(t+5)

=(x2+8x+7+3)(x2+8x+7+15)

=(x2+8x+10)(x2+8x+22)

d)(x+2)(x+3)(x+4)(x+5)-24

=(x2+7x+10)(x2+7x+12)-24

Đặt t=x2+7x+10

t(t+2)-24=(t-4)(t+6)

=(x2+7x+10-4)(x2+7x+10+6)

=(x2+7x+6)(x2+7x+16)

=(x+1)(x+6)(x2+7x+16)

4 tháng 11 2016

a/ Đặt x2 + 4x + 8 = a

Thì đa thức ban đầu thành

a2 + 3ax + 2x= (a2 + 2ax + x2) + (ax + x2)

= (a + x)2 + x(a + x) = (a + x)(a + 2x)

11 tháng 9 2018

(x + 1)(x + 2)(x + 3)(x + 4) - 24

= x4 + 10x3 + 35x2 + 50x + 24 - 24

= x4 + 10x3 + 35x2 + 50x

11 tháng 9 2018

( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24

= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24

Đặt t = x2 + 5x + 5 

=> ( t - 1 ). ( t + 1 ) - 24

= t2 - 1 - 24 

= t2 - 25

= ( t - 5 ). ( t + 5 )

= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )

= ( x2 + 5x ) . ( x2 + 5x + 10 )

= x. ( x + 5 ) . ( x2 + 5x + 10 )

31 tháng 10 2020

a) Đặt: x = a- b; y = b - c ; z = c- a 

Ta có: x + y + z = 0 

=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)

=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) Đặt: \(a=x^2-2x\) 

Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)

d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt: \(x^2-8=t\)

Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)

\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)

\(=\left(2x^2+9x-16\right)^2\)

1 tháng 10 2017

a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\text{[}\left(b^3-c^3\right)+\left(a^3-b^3\right)\text{]}+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b^3-c^3\right)-\left(b-c\right)\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)