\(^2-5x+6\)

b.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

a) \(x^2-6x+8\)

\(=x^2-2\cdot x\cdot3+3^2-1\)

\(=\left(x-3\right)^2-1^2\)

\(=\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

Còn lại tương tự

a) \(x^2-6x+8=x^2-2x-4x+8\)                     

\(=\left(x^2-2x\right)-\left(4x-8\right)\)

=x(x-2)-4(x-2) = (x-2)(x-4)

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

a)

\(25x^2-9(x+y)^2=(5x)^2-(3x+3y)^2\)

\(=(5x-3x-3y)(5x+3x+3y)=(2x-3y)(8x+3y)\)

b)

\(x^2-x-2=x^2+x-2x-2=x(x+1)-2(x+1)=(x-2)(x+1)\)

c)

\(3x^2-11x+6=3x^2-9x-2x+6\)

\(=3x(x-3)-2(x-3)=(x-3)(3x-2)\)

d)

\(x^2+5x+8\): biểu thức không phân tích được thành nhân tử

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

e)

\(x^2+8x+7=x^2+x+7x+7\)

\(=x(x+1)+7(x+1)=(x+1)(x+7)\)

g)

\(x^2-6x-16=x^2-6x+9-25\)

\(=(x-3)^2-5^2=(x-3-5)(x-2+5)=(x-8)(x+2)\)

h)

\(4x^2-8x+3=4(x^2-2x+1)-1\)

\(=4(x-1)^2-1=(2x-2)^2-1^2=(2x-2-1)(2x-2+1)\)

\(=(2x-3)(2x-1)\)

i)

\(3x^2-11x+6=3x^2-9x-2x+6\)

\(=3x(x-3)-2(x-3)=(3x-2)(x-3)\)

a) Ta có: \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\frac{\left(2x+1\right)^2\cdot3}{15}-\frac{5\left(x-1\right)^2}{15}-\frac{7x^2-14x-5}{15}=0\)

\(\Leftrightarrow3\left(4x^2+4x+1\right)-5\left(x^2-2x+1\right)-7x^2+14x+5=0\)

\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

\(\Leftrightarrow36x+3=0\)

\(\Leftrightarrow36x=-3\)

\(\Leftrightarrow x=\frac{-3}{36}\)

Vậy: \(x=\frac{-3}{36}\)

b) Ta có: \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{201-x}{99}+\frac{203-x}{97}-\frac{205-x}{95}-3=0\)

\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)

\(\Leftrightarrow\frac{201-x+99}{99}+\frac{203-x+97}{97}+\frac{205-x+95}{95}=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\)

nên 300-x=0

\(\Leftrightarrow x=300\)

Vậy: x=300

c) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\ne0\forall x\)(2)

Từ (1) và (2) suy ra x+1=0

hay x=-1

Vậy: x=-1

d) Ta có: \(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x-1=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\)

\(\Leftrightarrow t^2-1-24=0\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)

\(\Leftrightarrow\left(x^2+x-1-5\right)\left(x^2+x-1+5\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\right]\)(3)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\ne0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

e) Ta có: \(\left(5x-3\right)-\left(4x-7\right)=0\)

\(\Leftrightarrow5x-3-4x+7=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy: x=-4

f) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{1}{3}\right\}\)

g) Ta có: \(x^2+6x-16=0\)

\(\Leftrightarrow x^2-2x+8x-16=0\)

\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-8\right\}\)

h) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-5;2\right\}\)

i) Ta có: \(x^2+x-2=0\)

\(\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-2\right\}\)

k) Ta có: \(3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;\frac{-1}{3}\right\}\)

l) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-2x-10x+5=0\)

\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

29 tháng 7 2020

Bài làm:

a) \(x^2-6x+4=\left(x^2-6x+9\right)-5=\left(x-3\right)^2-\left(\sqrt{5}\right)^2\)

\(=\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\)

b) \(x^2-4x+3=x^2-x-3x+3=\left(x-1\right)\left(x-3\right)\)

c) \(6x^2-5x+1=6x^2-3x-2x+1=\left(2x-1\right)\left(3x-1\right)\)

d) \(3x^2+13x-10=3x^2+15x-2x-10=\left(x-5\right)\left(3x-2\right)\)

4 tháng 8 2020

Bài 1 : Phân tích các đa thức sau thành nhân tử : ( tách một hạn tử thành nhiều hạng tử )
a, 3x2 + 9x - 30

= 3(x2 + 3x - 10)

= 3(x2 + 5x - 2x - 10)

= 3[x(x + 5) - 2(x + 5)]

= 3(x + 5)(x - 2)

b, x2 - 3x + 2

= x2 - x - 2x + 2

= x(x - 1) - 2(x - 1)

= (x - 1)(x - 2)
c, x2 - 9x + 18

= x2 - 6x - 3x + 18

= x(x - 6) - 3(x - 6)

= (x - 6)(x - 3)
d, x2 - 6x + 8

= x2 - 4x - 2x + 8

= x(x - 4) - 2(x - 4)

= (x - 4)(x - 2)
e, x2 - 5x - 14

= x2 + 2x - 7x - 14

= x(x + 2) - 7(x + 2)

= (x + 2)(x - 7)
f, x2 + 6x + 5

= x2 + x + 5x + 5

= x(x + 1) + 5(x + 1)

= (x + 1)(x + 5)
h, x2 - 7x + 12

= x2 - 3x - 4x + 12

= x(x - 3) - 4(x - 3)

= (x - 3)(x - 4)
i, x2 - 7x + 10

= x2 - 2x - 5x + 10

= x(x - 2) - 5(x - 2)

= (x - 2)(x - 5)

#Học tốt!

5 tháng 7 2016

a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)

b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)

c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)

d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)

 

6 tháng 7 2016

tik nhé Toán lớp 8

13 tháng 10 2019

\(e,-5x+x^2-14\)

\(=x^2+2x-7x-14\)

\(=x\left(x+2\right)-7\left(x+2\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

\(f,x^3+8+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+2x+4\right)+6x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+8x+4\right)\)

\(g,15x^2-7xy-2y^2\)

\(=15x^2+3xy-10xy-2y^2\)

\(=3\left(5x+y\right)-2y\left(5x+y\right)\)

\(=\left(5x+y\right)\left(3-2y\right)\)

\(h,3x^2-16x+5\)

\(=3x^2-x-15x+5\)

\(=x\left(3x-1\right)+5\left(3x-1\right)\)

\(=\left(3x-1\right)\left(x+5\right)\)

13 tháng 10 2019

\(a,x^3+2x^2y+xy^2=x\left(x^2+2xy+y^2\right)\)

\(=x\left(x+y\right)^2\)

\(b,4x^2-9y^2+4x-6y\)

\(=4x^2+4x+1-\left(9y^2+6y+1\right)\)

\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

\(c,-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(y-x+5\right)\)

\(d,x^2+4x-12\)

\(=x^2-2x+6x-12\)

\(=x\left(x-2\right)+6\left(x-2\right)\)

\(=\left(x-2\right)\left(x+6\right)\)

8 tháng 7 2016

b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)

                                                         \(=x^4+2x^3+5x^2+4x-12\)

                                                         \(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)

                                                         \(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

                                                          \(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)

                                                          \(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)

                                                           \(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)

                                                            \(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c,        \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)

                                    \(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)

                                     = \(\left(x^2+x-2\right)\left(x+2\right)\)

9 tháng 7 2016

a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)

\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)

\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

b,c có ng lm rồi

d)\(2x^4-3x^3-7x^2+6x+8\)

Ta thấy x=-1 là nghiệm của đa thức 

=>đa thức có 1 hạng tử là x+1

\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)

\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)

\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)

\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)

phần còn lại bạn tự lo nhé

22 tháng 10 2018

a,        (x-2)(3x-2)

b,        (x+5)(x+6)

c,        (x+1)(x+4)

d          (x-5y)(x-2y)

e,         (x-6)(x-3)

f,          (x-2)(x-1)

g          (x-2)(3x+1)

h          (2x-3)(x+2)

i