Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x11+x4+1
= x11+x10+x9-x10-x9-x8+x8+x7+x6-x7-x6-x5+x5+x4+x3-x3-x2-x+x2+x+1
= x9(x2+x+1)-x8(x2+x+1)+x6(x2+x+1)-x5(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x9-x8+x6-x5+x3-x+1)
a).
\(x^5+x+1=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^3-x^2\right)\)
b).\(x^8+x^7+1=\left(x^8+x^7+x^6\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
d).
\(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
e).
\(x^8+x^4+1=x^8+2x^4+1-x^4\\ =\left(x^4+1\right)^2-\left(x^2\right)^2\\ =\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\\ =\left(x^4-x^2+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
c)(x2+x)2-2(x2+x)-15
đặt x2+x=a ta có
a2-2a-15
=a2+3a-5a-15
=(a2+3a)-(5a+15)
=a(a+3)-5(a+3)
=(a+3)(a-5)
thay a=x2+x
(x2+x+3)(x2+x-5)
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
\(x^4+2014x^2+2013x+2014\)
\(=x^4+2014x^2+2014x-x+2014\)
\(=\left(x^4-x\right)+\left(2014x^2+2014x+2014\right)\)
\(=x\left(x^3-1\right)+2014\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2014\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2014\right)\)
b)\(x^8+7x^4+6\)
\(=x^8+x^4+6x^4+6\)
\(=x^4\left(x^4+1\right)+6\left(x^4+1\right)\)
\(=\left(x^4+1\right)\left(x^4+6\right)\)
b) \(x^8+7x^4+16\)
\(=\left(x^8+8x^4+16\right)-x^4\)
\(=\left[\left(x^4\right)^2+2.x^4.4+4^2\right]-x^4\)
\(=\left(x^4+4\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+4-x^2\right)\left(x^4+4+x^2\right)\)
ta có : \(x+\frac{1}{x}=10\)
<=> \(x^2-10x+1=0\)
<=> \(x=5-2\sqrt{6},x=5+2\sqrt{6}\)
ta thay lần lượt các giá trị x trên vào S
với \(x=5-2\sqrt{6}\)=> S=95050
với \(x=5+2\sqrt{6}\)=> S=95050
vậy S=95050
a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y
=>x2+2y2+ 1 ≥ 1
=>Phân thức trên luôn có nghĩa
\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)
\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)
\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)
a) \(x^7+x^5+1\)
\(= (x^7 - x ) + (x^5 - x^2 ) + (x^2 + x + 1)\)
\(= x(x^3 - 1)(x^3 + 1) + x^2(x^3 - 1) + (x^2 + x + 1)\)
\(= (x^2 + x + 1)(x - 1)(x^4 + x) + x^2 (x - 1)(x^2 + x + 1) +(x^2 + x +1)\)
\(= (x^2 + x + 1)[(x^5 - x^4 + x^2 - x) + (x^3 - x^2 ) + 1]\)
\(= (x^2 + x + 1)(x^5 - x^4 + x^3 - x + 1)\)
b) tương tự
thêm và bớt là sao??? cho đề đầy đủ đi