Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
x4 + x3 + 2x2 + x + 1
= (x4 + 2x2 + 1) + (x3 + x)
= (x2 + 1)2 + x (x2 + 1)
= (x2 + 1) ( x2 + 1 + x)
= (x2 + 1) (x + 1)2
3(x - 3)(x + 7) + (x - 4)2 + 48
= 3(x2 + 7x - 3x - 21) + x2 - 8x + 16 + 48
= 3x2 + 21x - 9x - 63 + x2 - 8x + 16 + 48
= 4x2 + 4x + 1
= (2x + 1)2
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(b,x^3-2x^2-4xy^2+x\)
\(=x\left(x^2-2x-4y^2+1\right)\)
\(=x\left[\left(x^2-2x+1\right)-4y^2\right]\)
\(=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]\)
\(=x\left(x-1-2y\right)\left(x-1+2y\right)\)
\(=x\left(x-2y-1\right)\left(x+2y-1\right)\)
\(---\)
\(c,\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-8\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\) (1)
Đặt \(y=x^2+7x+10\), thay vào (1) ta được:
\(y\left(y+2\right)-8\)
\(=y^2+2y+1-9\)
\(=\left(y+1\right)^2-3^2\)
\(=\left(y+1-3\right)\left(y+1+3\right)\)
\(=\left(y-2\right)\left(y+4\right)\)
\(=\left(x^2+7x+10-2\right)\left(x^2+7x+10+4\right)\)
\(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)
#Ayumu
x4 - 4x3 - 8x2 + 8x
= x(x3 - 4x2 - 8x + 8)
= x[x3 + 8 - 4x(x + 2)]
= x[(x + 2)(x2 - 2x + 4) - 4x(x + 2)]
= x(x + 2)(x2 - 6x + 4)
= x(x + 2)(x2 - 6x + 9 - 5)
= \(x\left(x+2\right)\left[\left(x-3\right)^2-5\right]=x\left(x+2\right)\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)\)
\(x^4-4x^3-8x^2+8x\)
\(=x\left(x^3-4x^2-8x+8\right)\)
\(=x\left(x^3-6x^2+2x^2+4x-12x+8\right)\)
\(=x\left[\left(x^3-6x^2+4x\right)+\left(2x^2-12x+8\right)\right]\)
\(=x\left[x\left(x^2-6x+4\right)+2\left(x^2-6x+4\right)\right]\)
\(=x\left(x^2-6x+4\right)\left(x+2\right)\)
\(=x\left[\left(x-3\right)^2-\left(\sqrt{5}\right)^2\right]\left(x+2\right)\)
\(=x\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\left(x+2\right)\)
a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).
Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).
Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.
b) \(g\left(x\right)=x^7+x^2+1\)
\(g\left(x\right)=x^7-x+x^2+x+1\)
\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.
a)\(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(4-y\right)^2-\left(4-y\right)^3=\left(4-y\right)^2\left(7x-4+y\right)\)
b)\(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
\(=\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)-9\left(4x-8\right)\)
\(=\left(4x-8\right)\left(x^2-x-10\right)=4\left(x-2\right)\left(x^2-x-10\right)\)
a.\(7x.\left(y-4\right)^2-\left(4-y\right)^3\)=\(7x.\left(4-y\right)^2-\left(4-y\right)^3=\left(4-y\right)^2.\left(7x+y-4\right)\)
b.\(\left(4x-8\right).\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9.\left(8-4x\right)\)
=\(\left(4x-8\right)\left(x^2+6-x-7-9\right)=\left(4x-8\right)\left(x^2-x-10\right)\)
Ta có: