K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)-abc\)

\(=\left(a+b\right)\left(ab+bc+ca\right)+c^2b+c^2a\)

\(=\left(a+b\right)\left(ab+bc+ca+c^2\right)\)

=(a+b)(b+c)(a+c)

d: \(=x\left(x^3+6x^2y+12xy^2+8y^3\right)-y\left(8x^3+12x^2y+6xy^2+y^3\right)\)

\(=x^4+6x^3y+12x^2y^2+8xy^3-8x^3y-12x^2y^2-6xy^3-y^4\)

\(=x^4-y^4-2x^3y+2xy^3\)

\(=\left(x-y\right)\cdot\left(x+y\right)\left(x^2+y^2\right)-2xy\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)^3\)

2 tháng 8 2020

a/ \(A=xy-4y-5x+20\)

\(=x\left(y-5\right)-4\left(y-5\right)\)

\(=\left(x-4\right)\left(y-5\right)\)

Thay \(x=14;y=5,5\) vào biểu thức A ta có :

\(A=\left(14-4\right)\left(5,5-5\right)\)

\(=10.0,5=5\)

Vậy...

b/ \(B=xyz-\left(xy+yz+zx\right)+x+y+z-1\)

\(=xyz-xy-yz-zx+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(zx-x\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-y-x+1\right)\)

\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

Thay \(x=9,y=10,z=11\) vào biểu thức B ta có :

\(B=\left(9-1\right)\left(10-1\right)\left(11-1\right)\)

\(=720\)

Vậy....

c/ \(C=x^3-x^2y-xy^2+y^3\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

Thay \(x=5,75,y=4,25\) vào biểu thức C ta có :

\(C=\left(5,75-5,25\right)^2\left(5,75+5,25\right)=11,25\)

Vậy..

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

5 tháng 7 2019

Em(mình) thử nhé, ko chắc đâu

3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)

\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc

Suy ra \(P=\frac{-abc}{abc}=-1\)

Vậy..

b: \(=\left(ab+ac+b^2+bc\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2+abc+abc\)

\(=ab\left(a+b\right)+abc+bc\left(b+c\right)+abc+ac\left(a+c\right)+abc\)

\(=ab\left(a+b+c\right)+bc\left(b+c+a\right)+ac\left(a+b+c\right)\)

\(=\left(a+b+c\right)\cdot\left(ab+bc+ac\right)\)

c: loading...

30 tháng 9 2017

1)

a \(x^3+y^3+x^2z+y^2z-xyz\)

=(x+y)(x2-xy+y2)+z(x2-xy+y2)

=(x+y+z)(x^2-xy+y^2)

b)yz(y+z)+xz(z-x)-xy(x+y)

=yz2+y2z+xz2-x2z-x2y-xy2

=z2(x+y)-z(x2-y2)-xy(x+y)

=(z2-xy)(x+y)-z(x-y)(x+y)

=(z2-xy-zx+zy)(x+y)

=[z(z-x)+y(z-x)](x+y)

=(z+y)(z-x)(x+y)

30 tháng 9 2017

==1)

a) x3+y3+x2z+y2z-xyz

= ( x+y)(x2-xy+y2)+z(x2+y2-xy)

=(x2+y2-xy)(x+y+z)

b) yz(y+z)+xz(z-x)-xy(x+y)

=y2z+yz2+xz(z-x)-x2y-xy2

=(y2z-xy2)+(yz2-xy2)+xz(z-x)

=y2(z-x)+y(z2-x2)+xz(z-x)

=(z-x)(y2+xz)+y(z+x)(z-x)

=(z-x)(y2+xz+yz+xy)

=(z-x)(y(y+z)+x(z+y))

=(z-x)(y+z)(x+y)

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 1:
Vì $x+y+z=1$ nên:

\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)

\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)

\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Vậy $Q$ max bằng $1$

Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
31 tháng 5 2018

Bài 2:
Vì $x+y+z=1$ nên:

\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)

\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)

Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)

\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)

Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)

Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)

Dấu bằng xảy ra khi $3x=3y=3z=1$