Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x+1\right)^2-\left(x-1\right)^2\\ =\left(2x+1-x+1\right)\left(2x+1+x-1\right)\\ =\left(x+2\right)3x\)
\(b,9\left(x+5\right)^2-\left(x-7\right)^2\\ =\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\\ =\left(3x+15-x+7\right)\left(3x+15+x-7\right)\\ =\left(2x+22\right)\left(4x+8\right)\)
\(c,x^2y+xy^2-x-y\\ =xy\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(xy-1\right)\)
Các câu sau tương tự
Bài 2 .
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) Sai đề hay sao ý
c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)
d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
.....
\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{32}{1-x^{32}}\)
1/ \(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right).\)
\(=x^2+6x+9-\left(2x^2+6x-5x-15\right)\)
\(=x^2+6x+9-2x^2-6x+5x+15\)
\(=-x^2+5x+24\)
\(=-\left(x^2-5x-24\right)\)
\(=-\left(x^2-8x+3x-24\right)\)
\(=-\left[x\left(x-8\right)+3\left(x-8\right)\right]\)
\(=-\left(x-8\right)\left(x+3\right)\)
2/ \(x^2-xy+x-y\)
\(=\left(x^2+x\right)-\left(xy+y\right)\)
\(=x\left(x+1\right)-y\left(x+1\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
3/ \(x^3+6x^2+9x\)
\(=x\left(x^2+6x+9\right)\)
\(=x\left(x+3\right)^2\)
1,Bạn tự lm
\(2,x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-1\right)\left(x+1\right)\)
\(3,x^3+6x^2+9x=x\left(x^2+6x+9\right)=x\left(x+3\right)^2\)
\(4,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(xy+1\right)\)
\(5,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(y+x\right)=\left(x+y\right)\left(a+b\right)\)
\(6,x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=\left(x^2-bx\right)-\left(ax-ab\right)=x\left(x-b\right)-a\left(x-b\right)=\left(x-b\right)\left(x-a\right)\)
k) \(x^3-x+3x^2+3xt^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
h) \(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
a ) \(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\)
b ) \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c ) \(x^4+2x^3-4x-4\)
\(=x^4+2x^3+x^2-x^2-4x-4\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
d ) \(x^2\left(1-x^2\right)-4-4x^2\)
\(=x^2-x^4-4-4x^2\)
\(=x^2-\left(x^2+2\right)^2\)
\(=\left(x-x^2-2\right)\left(x+x^2+2\right)\)
e ) Đề bài ko rõ
f ) \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
1,Thực hiện phép tính :
a, (x + 2)9 : (x + 2)6
=(x+2)9-6
=(x+2)3
b, (x - y) 4 : (x - 2)3
=(x-y)4-3
=x-y
c, ( x2+ 2x + 4)5 : (x2 + 2x + 4)
=(x2+2x+4)5-1
=(x2+2x+4)4
d, 2(x2 + 1)3 : 1/3(x2 + 1)
=(2÷1/3).[(x2+1)3÷(x2+1)]
=6(x2+1)2
e, 5 (x - y)5 : 5/6 (x - y)2
=(5÷5/6).[(x-y)5÷(x-y)2]
=6(x-y))3
1. \(x^3-x^2+x-1=(x^3-x^2)+(x-1)\)
\(=x^2(x-1)+(x-1)=(x^2+1)(x-1)\)
2. \(6x^2y-2xy^2+3x-y=2xy(3x-y)+(3x-y)\)
\(=(3x-y)(2xy+1)\)
3. \(4x^2+1\) thì còn cái gì để phân tích hả bạn? Hay ý bạn là \(4x^4+1\)?
\(4x^4+1=(2x^2)^2+1=(2x^2)^2+1+4x^2-4x^2\)
\(=(2x^2+1)^2-(2x)^2=(2x^2+1-2x)(2x^2+1+2x)\)
4. \(x^2-9x+8=(x^2-x)-(8x-8)\)
\(=x(x-1)-8(x-1)=(x-1)(x-8)\)
5. \(x^3-2x^2y+3xy^2=x(x^2-2xy+3y^2)\)
6. \(x^2-6x+y-y^2\) (sai đề)
7. \(x^2-xy-2x+2y=(x^2-xy)-(2x-2y)\)
\(=x(x-y)-2(x-y)=(x-y)(x-2)\)
Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@
B1: Phân tích thành nhân tử:
a) \(6x^2+9x=3x\left(2x+3\right)\)
b) \(4x^2+8x=4x\left(x+2\right)\)
c) \(5x^2+10x=5x\left(x+2\right)\)
d) \(2x^2-8x=2x\left(x-4\right)\)
e) \(5x-15y=5\left(x-3y\right)\)
f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)
\(=\left(x-1-2y\right)\left(x-1+2y\right)\)
h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)
i) \(9x^2-18x+9=\left(3x-3\right)^2\)
k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)
m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)
\(=-\left(2x-y\right)^2\)
n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)
\(=\left(x-31\right)\left(x+1\right)\)
o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)
\(=\left(2+x\right)\left(8+x\right)\)
p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)\)
Bài 1 :
a ) \(6x^2+9x=3x\left(x+3\right)\)
b ) \(4x^2+8x=4x\left(x+2\right)\)
c ) \(5x^2+10x=5x\left(x+2\right)\)
d ) \(2x^2-8x=2x\left(x-4\right)\)
e ) \(5x-15y=5\left(x-3y\right)\)
f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)
i ) \(9x^2-18x+9=\left(3x-3\right)^2\)
k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)
l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)
m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)
n ) \(\left(x-15\right)^2=x^2-30x+15^2\)
o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)
Bài 2 :
a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)
b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)
c ) \(2x+x^2-2y-2xy=......................\)
d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)
\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)
\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)
Câu 1) xem lại đề giùm đi em.