\(a^6+a^4+a^2b^2+b^4-b^6\)

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

a/ \(E=a^6+a^4+a^2b^2+b^4-b^6\)

\(E=\left[\left(a^2\right)^2+2a^2b^2+\left(b^2\right)^2\right]+\left(a^6-b^6\right)-a^2b^2\)

\(E=\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]+\left(a^3-b^3\right)\left(a^3+b^3\right)\)

\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left[1+\left(a-b\right)\left(a+b\right)\right]\)

\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(1+a^2-b^2\right)\)

2 tháng 9 2018

\(a^6+a^4+a^2b^2+b^4-b^6\)

\(a^2\left(a^4+a^2b^2+b^4\right)-b^2\left(a^4+a^2b^2+b^4\right)+\left(a^4+a^2b^2+b^4\right)\)

\(=\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2+1\right)\)

\(=\left(a^2+b^2+ab\right)\left(a^2+b^2-ab\right)\left(a^2-b^2+1\right)\)

20 tháng 8 2020

1. Ta có: \(3xy\left(a^2+b^2\right)+ab\left(x^2-9y^2\right)\)

\(=3xya^2+3xyb^2+abx^2+ab9y^2\)

\(=\left(3xya^2+abx^2\right)+\left(3xyb^2+ab9y^2\right)\)

\(=ax\left(3ya+bx\right)+3by\left(xb+3ya\right)\)

\(=\left(3ya+xb\right)\left(3yb+ax\right)\)

2.Check lại đề hộ mình nha:((

22 tháng 8 2020

Câu 2 nên sủa lại đề nha

2. xy(a2+2b2)+ab(2x2+y2)

=xya2+xy2b2+ab2x2+aby2

=(xya2+aby2)+(xy2b2+ab2x2)

=ay(ax+by)+2bx(by+ax)

=(ax+by(ay+2bx)

Bài 2:

a)A= \(6x^2\)\(-11x+3\)

<=>A=\(6x^2\)\(-2x-9x+3\)

<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)

=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)

<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)

=>A=(3x-1)(2x+3)

17 tháng 9 2016

a)x6-y6+

=[(x2)3-(y2)3]+(x4+x2y2+y4)

=[(x2-y2)(x4+x2y2+y4)]+(x4+x2y2+y4)

=(x4+x2y2+y4)[(x2-y2)+1]

=(x2-xy+y2)(x2+xy+y2)(x2-y2+1)

1 tháng 11 2016

Đây, bản full đây thím, tớ thực sự đã kiên nhẫn lắm đấy ...

a)\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

\(=4\left[\left(x^2-2x+1\right)-\left(a^2-2ay+y^2\right)\right]\)

\(=4\left[\left(x-1\right)^2-\left(a-y\right)^2\right]\)

\(=4\left(x-1-a+y\right)\left(x-1+a-y\right)\)

b)\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

c)\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(5x+5\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

d)\(a^5+a^4+a^3+a^2+a+1=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)

\(=\left(a+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a+1\right)\left[\left(a^2+1\right)^2-a^2\right]\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

e)\(x^3-3x^2+3x-1-y^3=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-1-y\right)\left(x^2-2x+1+xy-y+y^2\right)\)

f)\(5x^3-3x^2y-45xy^2+27y^3=5x\left(x^2-9y^2\right)-3y\left(x^2-9y^2\right)\)

\(=\left(x^2-9y^2\right)\left(5x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)\left(5x-3y\right)\)

g)\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)

\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)

\(=3\left(a-b+c\right)\left(x+6y\right)^2\)

1 tháng 11 2016

a/ \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=\left(2x-2\right)^2-\left(2y-2a\right)^2=\left(2x-2+2y-2a\right)\left(2x-2-2y+2a\right)\)

b/ \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

Giải giúp bạn 2 bài tiêu biểu thôi nha

29 tháng 6 2018

BÀI 1:

a) \(x^4+2x^2y+y^2=\left(x^2+y\right)^2\)

b) \(\left(2a+b\right)^2-\left(2b+a\right)^2=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)

\(=\left(3a+3b\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)\)

c) \(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)

\(=\left(a-b\right)\left[a^2+ab+b^2+\left(a-b\right)\right]=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)

d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)

e) \(\left(y^3+8\right)+\left(y^2-4\right)=\left(y+2\right)\left(y^2-y+2\right)\)

f) \(1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)

g) \(x^4-1=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)

h) ktra lại đề

m) \(\left(x-a\right)^4-\left(x+a\right)^4=-8ax\left(a^2+x^2\right)\)

29 tháng 6 2018

a ) x^4 + 2x^2y + y^2 

   Dùng hằng đẳng thức ( a + b )^2 = a^2 +2ab + b^2

   = ( x^2 + y )^2

b ) ( 2a + b )^2 - ( 2b + a )^2

   = ( 4a^2 + 4ab + b^2 ) - ( 4b^2 + 4ab + a^2 )

   = 4a^2 + 4ab + b^2 - 4b^2 - 4ab - a^2

   = 3a^2- 3b^2

   = 3( a^2 - b^2 ) 

17 tháng 12 2018

A/  \(2x^3-4x^2y+2xy^2\)

\(=2x\left(x^2-2xy+y^2\right)\)

\(=2x\left(x-y\right)^2\)

B/  \(2x^3-\left(a+2\right)x^2-ax+a^2\)

\(=2x^3-ax-4a-4\)

10 tháng 8 2016

a) 4(x2-y2)-8(x-ay)-4(a2-1)

    => 4x2-4y2-8x+8ay-4a2+4

    => 4(x2-y2-2x+2ay-a2+1)

c) a5+a4+a3 +a2 +a+1

    => a(a4+a3+a2+a+1)+1

16 tháng 9 2016

a) = (x + 1)^3 - 27z^3 = (x+1 - 3z)( (x+1)^2 + 3z(x+1) + 9z^2 )

b)= x^2 + x+ 3x + 3 = x (x+1) +3 (x+1) =(x+3)(x+1)

c) = 2x^2 - 2x + 5x - 5 = 2x(x-1) + 5(x-1) = (2x+5)(x-1)

d) = (a^2 + 1 - 2a)(a^2 +2a +1) = (a-1)^2 * (a+1)^2 

e) = x^3 ( x-1) - (x^2 - 1) = x^3 ( x-1) - (x+1)(x-1) = (x^3 -x -1)(x-1)