Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + y + z )2 + ( x + y - z )2 - 4z2
= [ ( x + y ) + z ]2 + [ ( x + y ) - z ]2 - 4z2 (1)
Đặt \(\hept{\begin{cases}x+y=a\\z=b\end{cases}}\)
(1) <=> ( a + b )2 + ( a - b )2 - 4b2
= a2 + 2ab + b2 + a2 - 2ab + b2 - 4b2
= 2a2 - 2b2
= 2( a2 - b2 )
= 2( a - b )( a + b )
= 2( x + y - z )( x + y + z )
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
x2(y - z) + y2(z - x) + z2(x - y)
= z2(x - y) + x2 y - x2 z + y2 z - y2 x
= z2(x - y) + (x2 y - y2 x) + (- x2 z + y2 z)
= (x - y)(z2 + xy - zx - zy)
= (x - y)[(z2 - zx) + (xy - zy)]
= (x - y)(z - x)(z -y)
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2\left(z-y+y-x\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)+\left(z-y\right)\left(y+z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(y-x\right)\left(x-z\right)\)
x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz
=x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2
=xy(x+y+z)+zx(x+y+z)+yz(y+z)
=x(y+z)(x+y+z)+yz(y+z)
=(y+z)(x^2+xy+zx+yz)
=(x+y)(y+z)(z+x)
Phân tích đa thức (x^2 + y^2 + z^2)(x + y + z)^2 + (xy + yz + zx)^2 thành nhân tử
phân tích đa thức thành nhân tử đặt biến phụ
(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2
Trả lời (1)
(x2 + y2 + z2)(x + y + z)2 + (xy + yz +zx)2
= (x2 + y2 + z2)(x2 + y2 + z2 + 2xy +2yz +2zx) + (xy + yz + zx)2
= (x2 + y2 + z2)(x2 + y2 + z2) + (x2 + y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2
= (x2 + y2 + z2)2 + 2(x2 + y2 + z2)(xy + yz + zx) + (xy + yz + zx)2
= (x2 + y2 + z2 + xy + yz + zx)2
Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.
bởi Bùi Xuân Chiến
Ta có: \(x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
\(=x\left(y-z\right)\left(y+z\right)+yz^2-x^2y+zx^2-y^2z\)
\(=x\left(y-z\right)\left(y+z\right)-\left(y^2z-yz^2\right)-\left(x^2y-zx^2\right)\)
\(=x\left(y-z\right)\left(y+z\right)-yz\left(y-z\right)-x^2\left(y-z\right)\)
\(=\left(y-z\right)\left(xy+zx-yz-x^2\right)\)
\(=\left(y-z\right)\left[\left(zx-yz\right)-\left(x^2-xy\right)\right]\)
\(=\left(y-z\right)\left[z\left(x-y\right)-x\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
x2(y - z) + y2(z - x) + z2(x - y)
= z2(x - y) + x2 y - x2 z + y2 z - y2 x
= z2(x - y) + (x2 y - y2 x) + (- x2 z + y2 z)
= (x - y)(z2 + xy - zx - zy)
= (x - y)[(z2 - zx) + (xy - zy)]
= (x - y)(z - x)(z -y)
a, x2-x-y2-y = ( x2-y2)-(x+y)=(x-y)(x+y)-(x+y)=(x+y)(x-y-1)
b. x2-2xy+y2-z2= (x-y)2 - z2= (x-y-z)(x-y+z)
Ta thấy:
a) \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
b) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y+z\right)\left(x-y-z\right)\)
A = (\(x+y\))2 - 2.(\(x+y\))z + 4z2
A = (\(x+y\))2 - 2.(\(x+y\))z + (2z)2
A = (\(x+y\) - 2z)2
A = (\(x+y\) - 2z)(\(x+y\) - 2z)