Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-y^4=\left(x^2\right)^2-\left(y^2\right)^2=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
c) \(36-12x+x^2=x^2-12x+36=x^2-6x-6x+36\)
\(=x\left(x-6\right)-6\left(x-6\right)=\left(x-6\right)\left(x-6\right)=\left(x-6\right)^2\)
\(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(4x^2+12x+9\)
\(=\left(2x\right)^2+2.2x.3+9\)
\(=\left(2x+3\right)^2\)
\(36-12x+x^2\)
\(=6^2-2.6.x+x^2\)
\(=\left(6-x\right)^2\)
a) \(x^3\left(x^2-7\right)^2-36x=x\left[\left(x^3-7x\right)^2-6^2\right]\)
\(=x\left(x^3-7x-6\right)\left(x^3-7x+6\right)\)
\(x\left[\left(x-3\right)\left(x+1\right)\left(x+2\right)\right].\left[\left(x+3\right)\left(x-2\right)\left(x-1\right)\right]\)
\(=\left(x-3\right)\left(x-2\right)\left(x-1\right).x.\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Không pt được.
c) Không pt được.
\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)
\(=\left(2x^4+2x^2+1\right)\left(4x^4-2x^2+1\right)\)
\(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)
\(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)
a) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
b) \(4x^8+1=\left(2x^4\right)^2+1=\left(2x^4\right)^2-2.2x^4+1+2.2.x^4=\left(2x^4+1\right)^2-4x^4\)
c) \(x^2-8x-9==x^2+x-9x-9=x\left(x+1\right)-9\left(x+1\right)=\left(x+1\right)\left(x-9\right)\)
d) \(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)
a) \(5x^2+5xy-x-y\)
\(=5x.\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
b) \(5x^2-10y+5y^2-20z^2\)
\(=5.\left(x^2-2y+y^2-4z^2\right)\)
Đề sai ở đâu đó.
c) \(4x^2-y^2+4x+1\)
\(=\left(4x+4x^2+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2\)
\(=\left(2x+y+1\right)\left(2x-y+1\right)\)
a. \(x^5+x+1\)
\(=\left(x^5-x^2\right)+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\)\(+x^2+x+1\)
\(=\left[x^2\left(x-1\right)+1\right]\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
b.\(x^3+x^2+4\)
=\(x^3+2x^2-x^2-2x+2x+4\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+2\right)\)
c.\(x^4+2x^2-24\)
\(=x^4+2x^3-2x^3-4x^2+6x^2+12x-12x-24\)
\(=x^3\left(x+2\right)-2x^2\left(x+2\right)+6x\left(x+2\right)-12\left(x+2\right)\)
\(=\left(x^3-2x^2+6x-12\right)\left(x+2\right)\)
\(=\left[x^2\left(x-2\right)+6\left(x-2\right)\right]\left(x+2\right)\)
\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)
a, x^5 + x + 1 = x ^ 5 - x^2 + (x ^2 + x + 1) = x^2 ( x-1) ( x^2+x+1) + ( x^2+x+1) = ( x^2+x+1 ) ( x^3-x^2+1)
c, x^4 + 2x^2 -24 = (x^4 +6x^2) - ( 4x^2+24) = x^2( x^2+6) - 4(x^2+6) = (x^2-4)(x^2 +6 ) = (x-2)(x+2)(x^2+6)