K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2020

\(\frac{x^3}{x+y}=x^2-\frac{x^2y}{x+y}\ge x^2-\frac{x^2y}{2\sqrt{xy}}=x^2-\frac{1}{2}\sqrt{x^2.xy}\ge x^2-\frac{1}{4}\left(x^2+xy\right)=\frac{3}{4}x^2-\frac{1}{4}xy\)

Làm tương tự và cộng vế với vế:

\(A\ge\frac{3}{4}\left(x^2+y^2+z^2\right)-\frac{1}{4}\left(xy+yz+zx\right)\ge\frac{3}{4}\left(x^2+y^2+z^2\right)-\frac{1}{4}\left(x^2+y^2+z^2\right)\)

\(A\ge\frac{1}{2}\left(x^2+y^2+z^2\right)\ge\frac{3}{2}\sqrt[3]{\left(xyz\right)^2}=6\)

Dấu "=" xảy ra khi \(x=y=z=2\)

23 tháng 5 2020

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)+z^3-3xyz-3xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-xz=0\end{cases}}\)

Mà \(x,y,z>0\Rightarrow x+y+z\ne0\)

\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Leftrightarrow}x=y=z\)

Thay vào biểu thức A ta được : 

\(A=\frac{2018x-2019x+2020x}{\sqrt[3]{x^3}}=\frac{2019x}{x}=2019\)

Vậy ...

26 tháng 5 2020

đây nha bạn

a: (x+y+z)^3-x^3-y^3-z^3

=(x+y+z-x)(x^2+2xy+y^2-x^2-xy-xz+z^2)-(y+z)(y^2-yz+z^2)

=(x+y)(y+z)(x+z)

b: x^3+y^3+z^3=1

x+y+z=1

=>x+y=1-z

x^3+y^3+z^3=1

=>(x+y)^3+z^3-3xy(x+y)=1

=>(1-z)^3+z^3-3xy(1-z)=1

=>1-3z-3z^2-z^3+z^3-3xy(1-z)=1

=>1-3z+3z^2-3xy(1-z)=1

=>-3z+3z^2-3xy(1-z)=0

=>-3z(1-z)-3xy(1-z)=0

=>(z-1)(z+xy)=0

=>z=1 và xy=0

=>z=1 và x=0; y=0

A=1+0+0=1

3 tháng 10 2016

a/ \(\left(x+y+z\right)^3-x^3-y^3-z^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b/ Đề bài thiếu dữ kiện.

30 tháng 9 2017

a)

( x + y +  = ) 3  - x3 - y3 =3 = x3 + y3 =3 + 3( x + y ) (y + = ) ( = + x ) - x3 - y3 - =3

= 3( x + y ) ( y + = ) ( = + x )

b) Đề bài thiếu điều kiện

10 tháng 10 2019

Theo giả thiết \(\sqrt{\frac{yz}{x}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{xy}{z}}=3\)

\(\Rightarrow\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}+2x+2y+2z=9\)

Mặt khác , ta có BĐT phụ : \(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng BĐT Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có : \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2.\sqrt{9}+\frac{2007}{3}=675\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!