Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a) \(\left(3x+2\right).\left(x-3\right)-3x.\left(x+\frac{1}{3}\right)\)
\(=3x^2-9x+2x-6-\left(3x^2+x\right)\)
\(=3x^2-9x+2x-6-3x^2-x\)
\(=\left(3x^2-3x^2\right)+\left(-9x+2x-x\right)-6\)
\(=-8x-6.\)
Chúc bạn học tốt!
\(B=\left(3x-2\right)^2-\left(x+2\right).\left(x-2\right)\)
\(=\left(3x-2\right)^2-\left(x^2-2^2\right)\)
\(=9x^2-12x+4-x^2+4\)
\(=8x-12x+8\)
\(C=\left(x+4\right)^2-7x.\left(x-2\right)\)
\(=x^2+8x+16-\left(7x^2-14x\right)\)
\(=x^2+8x+16-7x^2+14x\)
\(=-6x^2+22x+16\)
\(D=-4x.\left(2x-7\right)+\left(x+5\right)^2\)
\(=-8x^2+28x+x^2+10x+25\)
\(=-7x^2+38x+25\)
2 câu dễ làm trước, 2 câu còn lại tối đi học về mới làm được..(giờ bận rồi)
a) ĐẶt \(x^2+3x+1=a\)
\(A=a\left(a-4\right)-5=a^2-4a-5=\left(a-5\right)\left(a+1\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(=\left(x-1\right)\left(x+4\right)\left(x+1\right)\left(x+2\right)\)
c)\(C=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt ẩn phụ: \(t=x^2+8x+7\) rồi làm tiếp đi..
Để anh làm nốt vậy.
\(B=\left(x^2+2x\right)^2-2x^2-4x-3\)
\(B=\left(x^2+2x\right)^2-2\left(x^2+2x\right)+1-4\)
\(B=\left(x^2+2x-1\right)^2-2^2\)
\(B=\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)
\(B=\left(x+3\right)\left(x-1\right)\left(x+1\right)^2\)
___
\(D=x^2-2xy+y^2-7x+7y+12\)
\(D=\left(x-y\right)^2-7\left(x-y\right)+12\)
\(D=\left(x-y\right)^2-3\left(x-y\right)-4\left(x-y\right)+12\)
\(D=\left(x-y\right)\left(x-y-3\right)-4\left(x-y-3\right)\)
\(D=\left(x-y-3\right)\left(x-y-4\right)\)
Ta có : 6x(3x + 5) - 2x(9x - 2) = 17
<=> 18x2 + 30x - 19x2 + 4x = 17
<=> 34x2 = 17
=> x2 = 17 : 34
=> \(x^2=\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
\(a,6x\cdot\left(3x+5\right)-2x\cdot\left(9x-2\right)=17\)
\(\Leftrightarrow18x^2+30x-18x^2+4x=17\)
\(\Leftrightarrow34x=17\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(b,2x\cdot\left(3x-1\right)-3x\cdot\left(2x+11\right)-70=0\)
\(\Leftrightarrow6x^2-2x-6x^2-33x-70=0\)
\(\Leftrightarrow-35x=70\)
\(\Leftrightarrow x=-2\)
Đầu bài ý c là j vậy ... mình k thấy zõ
Chúc bạn học giỏi
Kết bạn với mình nha
a/ \(x^3-5x^2+8x-4\)
= \(\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)
= \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-4x+4\right)\)
= \(\left(x-1\right)\left(x-2\right)^2\)
b/ \(x^3-x^2+x-1\)
= \(\left(x^3-x^2\right)+\left(x-1\right)\)
= \(x^2\left(x-1\right)+\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+1\right)\)
a) 3x2 - 7x + 2
= 3x2 - 6x - x + 2
= (3x2 - 6x) - (x - 2)
= 3x (x - 2) - (x - 2)
= (3x - 1) (x - 2)
a) 4x3y2 - 8x2y3 + 2x4y
= 2x2y ( 2xy - 4y2 + x2)
= 2x2y (x2 + 2xy + y2 - 5y2)
= 2x2y ( x + y - \(\sqrt{5}\).y)( x + y + \(\sqrt{5}\).y)
b) 2x2y - 4xy2 + 6xy
= 2xy ( x - 2y + 3)
c) - 3x-6xy + 9xz
= -3x( 1 + 2y - 3z)
a) \(x^3+2x^2-4x+1\)
\(=\left(x^3+3x^2-x\right)-\left(x^2+3x-1\right)\)
\(=x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\)
\(=\left(x-1\right)\left(x^2+3x-1\right)\)
c) cho da thuc P(x) =2x^4-7x^3 -2x^2 +13x +6? | Yahoo Hỏi & Đáp
Tham khảo