Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\left(1+x^2\right)^2-4x\left(1-x^2\right)\\ =\left(1+x^2\right)^2-\left(\sqrt{4x\left(1-x^2\right)}\right)^2\\ =\left(1+x^2-\sqrt{4x\left(1-x^2\right)}\right)\left(1+x^2+\sqrt{4x\left(1-x^2\right)}\right)\)
\(b,\left(x^2-8\right)^2-36\\ =\left(x^2-8-6\right)\left(x^2-8+6\right)\\ =\left(x^2-14\right)\left(x^2-2\right)\)
Theo mk là trừ 36 nhé

a) = (9x2)2 +22 = (9x2)2 + 2×9x2×2 + 22 - 36x2 = (9x2+2)2 -(6x)2 = (9x2+2+6x)(9x2+2-6x)
b) = x4 - 16x2 + 64+36= x4-16x2+100=x4+20x2+100-36x2= (x2+10)2 - (6x)2= (x2-6x+10)(x2-6x+10)
d) Đặt a=x2+x,ta có: a2+4a-12 = a2-2a+6a-12= a(a-2)+6(a-2) = (a+6)(a-2) tương đương (x2+x+6)(x2+x-2)=(x2+x+6)(x-1)(x+2)
e)Đặt a=x2+x+1(a>0), ta có: a(a+1)-12= a2+a-12= a2 -3a+4a -12= a(a-3) +4(a-3)=(a+4)(a-3) tương đương (x2+x+1+4)(x2+x+1-3) =( x2 +x+4)(x2+x-2)=(x2+x+4)(x-1)(x+2)

\(1,\\ a,\left(x^2+1\right)^2-4x\left(1-x^2\right)\\ =\left(x^2+1\right)^2+4x\left(x^2+1\right)\\ =\left(x^2+1\right)\left(x^2+1+4x\right)\\ b,\left(x^2-8\right)^2+36\\ =x^4-16x^2+64+36\\ =x^4-16x^2+100\\ =x^4-20x^2+100-4x^2\\ =\left(x^2-10\right)^2-4x^2\\ =\left(x^2-10-2x\right)\left(x^2-10+2x\right)\\ c,81x^4+4=81x^4+36x^2+4-36x^2\\ =\left(9x^2+2\right)^2-36x^2\\ =\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\\ d,x^5+x+1\\ =x^5+x^4+x^3-\left(x^4+x^3+x^2\right)+x^2+x+1\\ =x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\\ =\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
\(2,\\ a,x^3-7x-6\\ =x^3+x^2-x^2-x-6x-6\\ =x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\\ =\left(x+1\right)\left(x^2-x-6\right)\\ b,x^3+4x^2-7x-10\\ =x^3-2x^2+6x^2-12x+5x-10\\ =x^2\left(x-2\right)+6x\left(x-2\right)+5\left(x-2\right)\\ =\left(x-2\right)\left(x^2+6x+5\right)\\ =\left(x-2\right)\left(x^2+5x+x+5\right)\\ =\left(x-2\right)\left[x\left(x+5\right)+\left(x+5\right)\right]\\ =\left(x-2\right)\left(x+5\right)\left(x+1\right)\)

A = x2(x - 1) + 6(1 - x)
A = x3 - x2 + 6 - 6x
A = (x3 - 6x) - (x2 - 6)
A = x.(x2 - 6) - (x2 - 6)
A = (x - 1)(x2 - 6)
C = x2 + 2xy + y2 - yz - xz
C = (x + y)2 - z.(x + y)
C = (x + y - z).(x + y)

bằng phương pháp nào zậy bn????
547675675675678768768789980957457346242645657

b/ 4x4 + 4x3 + 5x2 + 2x + 1
= (4x4 + 4x3 + x2) + 2(2x2 + x) + 1
= (2x2 + x)2 + 2(2x2 + x) + 1
= (2x2 + x + 1)2
c/ x8 + x + 1 = (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)
e/ x4 - 8x + 63 = (x2 - 4x + 7)(x2 + 4x + 9)
\(a,...3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)\(=3\left(x^4+x^2+1\right)-\left(\left(x^4+x^2+1\right)+2\left(x^3+x^2+x\right)\right)\)
\(2\left(x^4+x^2+1\right)-2\left(x^3+x^2+x\right)=2\left(x^4-x^3-x+1\right)\) \(2\left(x^3\left(x-1\right)-\left(x-1\right)\right)=2\left(x-1\right)\left(x^3-1\right)\)
\(2\left(x-1\right)^2\left(x^2+x+1\right)\)

bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

1) x4y2 + x2y4 + x4y3 + x2y5 = (x4y2 + x2y4) + (x4y3 + x2y5) = x2y2.(x2 + y2) + x2y3.(x2 + y2) = x2y2.(x2+ y2) (1 + y) = [xy.(x2 + y2)].[xy(1+y)]
=> x4y2 + x2y4 + x4y3 + x2y5 chia cho xy.(x2 + y2) bằng xy.(1+ y)
2) A = (n2 - 8)2 + 36 = n4 - 16n2 + 100 = (n4 + 20n2 + 100) - 36n2 = (n2 + 10)2 - (6n)2 = (n2 - 6n+ 10).(n2 + 6n+ 10)
Vậy để A là số nguyên tố thì n2 - 6n + 10 = 1 hoặc n2 + 6n + 10 = 1
Mà n là số tự nhiên nên n2+ 6n + 10 > 1
=> n2 - 6n + 10 = 1 => n2 - 6n + 9 = 0 => (n -3)2 = 0 => n = 3
Vậy....
3) a) = xy(x - y) - xz(x + z) + yz.[(x+ z) + (x - y)] = xy(x - y) - xz(x + z) + yz.(x + z) + yz(x - y)
= [xy(x - y) + yz.(x - y)] + [(yz.(x+ z) - xz(x+z)] = y(x - y)(x+ z) + z(x + z).(y - x) = (x+ z)(x- y).(y - z)
b) = (x2 + x)2 - (2x)2 - 4(x+3) = (x2 + x + 2x).(x2 + x- 2x) - 4(x+3) = (x2 + 3x).(x2 - x) - 4(x+3)
= (x+3).[x.(x2 - x) - 4] = (x+3).(x3 - x2 - 4) = (x+3).(x3 - 8 + 4 - x2) = (x+3).[(x - 2)(x2 + 2x + 4) - (x - 2).(x+2)]
= (x + 3).(x - 2).(x2 + 2x + 4 - x- 2) = (x + 3).(x - 2).(x2 + x + 2)
4) a) n4 + 1/4 = (n4 + n2 + 1/4) - n2 = (n2 + 1/2)2 - n2 = (n2 - n + 1/2).(n2 + n + 1/2) = [n(n - 1) + 1/2].[n.(n+1) + 1/2]
Áp dụng công thức ta có:
A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}=\frac{\frac{1}{2}.\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right)...\left(18.19+\frac{1}{2}\right).\left(19.20+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right).\left(4.5+\frac{1}{2}\right)...\left(19.20+\frac{1}{2}\right).\left(20.21+\frac{1}{2}\right)}\)
A = \(\frac{\frac{1}{2}}{20.21+\frac{1}{2}}=\frac{1}{841}\)
a) \(x^4+x^2+1\)
\(=x^2\left(x^2+1\right)+\left(x^2+1\right)-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
b) \(\left(1+x\right)^2-4x\left(1-x^2\right)\)
\(=\left(1+x\right)^2-4x\left(1-x\right)\left(1+x\right)\)
\(=\left(1+x\right)\left[1+x-4x+4x^2\right]\)
\(=\left(1+x\right)\left[1-3x+4x^2\right]\)
a) x4 + x2 + 1
= [ ( x2 )2 + 2x2 + 1 ] - x2
= ( x2 + 1 ) - x2
= ( x2 + 1 - x2 )( x2 + 1 + x2 )
= 2x2 + 1