Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0,1(23) =\(\frac{1}{10}.1,\left(23\right)=\frac{1}{10}\left(1+0,\left(23\right)\right)=\frac{1}{10}.\left(1+23.0,\left(01\right)\right)=\frac{1}{10}.\left(1+23.\frac{1}{99}\right)=\frac{61}{495}\)
\(0,3\left(18\right)=\frac{1}{10}.\left(3+18.0,\left(01\right)\right)=\frac{1}{10}.\left(3+18.\frac{1}{99}\right)=\frac{7}{22}\)
a ) \(A=\frac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
Vì m(m + 1)(m + 2) + 5 và m(m + 1)(m + 2) + 6 là hai số tự nhiên liên tiếp nên chúng là NT cùng nhau hay A là phân số tối giản
b ) Vì m(m + 1)(m + 2) luôn chia hết cho 3 ( vì là tích 3 số tự nhiên liên tiếp )
6 chia hết cho 3
=> m(m + 1)(m + 2) + 6 chia hết cho 3
Mà theo a ) A là phân số tối giản
\(\Rightarrow A=\frac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)
là số thập phân vô hạn tuần hoàn
iem chỉ biết làm câu đầu , NHƯNG KO BÍT có ĐUG HAY KO
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)
\(A=\frac{1\cdot2\cdot3\cdot...\cdot2018\cdot2019}{2\cdot3\cdot4\cdot..\cdot2019\cdot2020}\)
\(A=\frac{1}{2020}\)
Với \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\) , ta có : \(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}=\frac{1}{2020}\)
Ta có \(7A=\frac{7}{2020}\) , \(9A=\frac{9}{2020}\) , \(1+A=\frac{2021}{2020}\)
\(\frac{1+7A}{1+9A}=\frac{1+\frac{7}{2020}}{1+\frac{9}{2020}}=\frac{\frac{2027}{2020}}{\frac{2029}{2020}}\)
Ta thấy \(\frac{\frac{2027}{2020}}{\frac{2029}{2020}}\)có tử kém mẫu \(\frac{2}{2020}\)đơn vị và không thể rút gọn được nữa .
\(\Rightarrow\frac{1+7A}{1+9A}\)là p/s tối giản.
Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!
Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)
\(\Rightarrow kn\)có thể bằng \(0\)
\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)
\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản
Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)
Chắc vậy !!!
Ta có: 2016,3(36) = 2016 + 0,3 + 0,0(36)
= 2016 + \(\frac{3}{10}\) + \(\frac{36}{990}\)
= 2016 + \(\frac{3}{10}\) + \(\frac{2}{55}\)
= \(\frac{1108800}{550}+\frac{165}{550}+\frac{20}{550}\) = \(\frac{1108985}{550}\) = \(\frac{221797}{110}\)
0,3(18) = 3,(18) . \(\frac{1}{10}\) = [3 + 0,(18)] . \(\frac{1}{10}\) = [3 + 18.0,(01)] . \(\frac{1}{10}\)
= [3 + 18.\(\frac{1}{99}\)] . \(\frac{1}{10}\) = [3 + \(\frac{2}{11}\)] . \(\frac{1}{10}\) = \(\frac{35}{11}.\frac{1}{10}\)
= \(\frac{7}{22}\)