Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Con tham khảo tại link dưới đây nhé:
Câu hỏi của Vũ Linh Đan - Toán lớp 7 - Học toán với OnlineMath
Đổi \(\frac{1}{\frac{17}{18}}=\frac{18}{17}\)
=> Bạn tự làm tiếp được
\(\left|x+6\right|-9=2x\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+6-9=2x\\x-6+9=2x\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-2x=-6+9\\x-2x=6-9\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}-x=3\\-x=-3\end{array}\right.\)
Vậy \(x=-3\)
Gọi tử của 2 phân số tối giản lần lượt là a;b
mẫu của 2 phân số tối giản lần lượt x;y
Ta có tử của chúng tỉ lệ vs 3 và 5
Suy ra a/3 = b/5=p suy ra a=3p; b=5p
mẫu của chúng tỉ lệ vs 4 và 7
Suy ra x/4=y/7=q suy ra x=4q;y=7q
Lại có a/x-b/y= 3/196
Hay 3p/4q - 5p/7q = 3/196
Suy ra p/q ( 3/4-5/7)= 3/196
Suy ra p/q= 3/7
Do đó : a/x = 9/28
b/y=15/49
Vậy 2 phân số tối giản cần tìm là 9/28 và 15/49
Các tử số tỉ lệ với 3 và 5 suy ra (tử số 1:3)=(tử số 2 :5)
Các mẫu số tỉ lệ với 4 và 7 suy ra (mẫu số 1 :4)= (mẫu số 2 :7)
Với 1 phân số : chia tử bao nhiêu thì phân số đó giảm bấy nhiêu lần , chia mẫu cho bao nhiêu thì phân số đó tăng bấy nhiêu lần
Suy ra : Phân số 1 :3x5= Phân số 2 :4x7
Suy ra phân số 1 = phân số 2 :4x7:5x3
suy ra phân số 1 = phân số 2 x 21 :20
vì 21/20 >1 nên suy ra phân số 1 lớn hơn phân số 2
suy ra 3/196=ps1-ps2=ps2x21/20-ps2=psx(21/20-1)...
suy ra ps 2=3/196x20=60/196=15/49
ps1=ps2x21:20=15/49x21:20=9/28
Đ/S:ps1=9/28 . ps2=15/49
Giả sử ta có hai phân số tối giản \(\frac{a}{b}\) và \(\frac{c}{d}\)
Với \(a,b,c,d\in Z;b\ne0;d\ne0;\left(\left|a\right|,\left|b\right|\right)=1;\left(\left|c\right|;\left|d\right|\right)=1\)
Theo đề bài :
\(\frac{a}{b}+\frac{c}{d}=m\left(m\in Z\right)\)
\(\Leftrightarrow ad+bc=m.bd\)( * )
\(\Rightarrow ad+bc⋮d\)
\(\Rightarrow bc⋮d\)
\(\Rightarrow b⋮d\) ( 1 )
( * ) \(\Rightarrow ad+bc⋮b\)
\(\Rightarrow ad⋮b\)
\(\Rightarrow d⋮b\) ( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow b=d\) hoặc \(b=-d\)
\(\Rightarrow\) đpcm
Lấy VD cho dễ hiểu :
\(d⋮b\Rightarrow\left|d\right|\ge\left|b\right|\) ( 1 )
\(b⋮d\Rightarrow\left|b\right|\ge\left|d\right|\) ( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left|b\right|=\left|d\right|\)
\(\Rightarrow b=d\) hoặc \(b=-d\)
\(2,\left(18\right)=2+0,\left(18\right)=2+0,\left(01\right).18=2+\frac{1}{99}.18=\frac{22}{11}+\frac{21}{11}=\frac{43}{11}\)