Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi \(x>0\)thì hàm số đã cho đồng biến \(\Leftrightarrow3m-2>0\)
\(\Leftrightarrow3m>2\)\(\Leftrightarrow m>\frac{2}{3}\)
b) Khi \(x>0\)thì hàm số đã cho nghịch biến \(\Leftrightarrow3m-2< 0\)
\(\Leftrightarrow3m< 2\)\(\Leftrightarrow m< \frac{2}{3}\)
a/ \(=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b/ \(=\left(x-\sqrt{22}\right)\left(x+\sqrt{22}\right)\)
c/ sửa đề bài xíu: \(2\sqrt{7x}\Rightarrow2\sqrt{7}x\)
\(=\left(x+\sqrt{7}\right)^2\)
d/ sửa như câu c
\(=\left(x-\sqrt{23}\right)^2\)
TH1: Lấy \(x_1;x_2\in R\) sao cho \(0< x_1< x_2\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=a\cdot\left(x_1+x_2\right)\)>0 vì \(x_1+x_2>0;a>0\)
=>Hàm số y=f(x)=ax2 đồng biến khi x>0 nếu a>0
TH2: Lấy \(x_1;x_2\in R^+;0< x_1< x_2\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\cdot\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1-x_2}\)
\(=a\left(x_1+x_2\right)< 0\)(vì x1+x2>0 và a<0)
=>Hàm số nghịch biến khi x>0
TH3: Lấy \(x_1;x_2\in R^-\) sao cho \(x_1< x_2< 0\)
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{a\left(x_1^2-x_2^2\right)}{x_1-x_2}=\dfrac{a\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1-x_2}\)
\(=a\left(x_1+x_2\right)>0\) vì a<0 và x1+x2<0
=>Hàm số đồng biến khi x<0
Lời giải:
ĐK: \(\left\{\begin{matrix} x+2\neq 0\\ \frac{-2}{x+2}\geq 0\\ x^2+2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq -2\\ x+2<0\\ x(x+2)\geq 0\end{matrix}\right.\Leftrightarrow x< -2\)
Đáp án C.
a/ Để hàm số đồng biến khi x>0
\(\Leftrightarrow1-2m>0\Rightarrow m< \frac{1}{2}\)
b/ Để hàm số nghịch biến khi x>0
\(\Leftrightarrow4m^2-9< 0\Leftrightarrow-\frac{3}{2}< m< \frac{3}{2}\)
c/ Để hàm số đồng biến khi x<0
\(\Leftrightarrow m^2-3m< 0\Leftrightarrow0< m< 3\)
d/ Do \(m^2-2m+3=\left(m-1\right)^2+2>0\) ;\(\forall m\)
\(\Rightarrow\) Hàm số đồng biến khi x>0 với mọi m