K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các hàm không tuần hoàn là cosx+x vì \(cosx+x\ne cos\left(x+k2\Omega\right)+x+k2\Omega\)

5 tháng 6 2024

Rủi

NV
15 tháng 7 2021

a.

\(\left\{{}\begin{matrix}sin\left(3x+\dfrac{\pi}{6}\right)\ne0\\cos2x\ne0\\sinx\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

b.

Do \(5+2cot^2x-sinx=4+2cot^2x+\left(1-sinx\right)>0\) nên hàm xác định khi:

\(\left\{{}\begin{matrix}sinx\ne0\\sin\left(x+\dfrac{\pi}{2}\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

a: ĐKXĐ: 2*sin x+1<>0

=>sin x<>-1/2

=>x<>-pi/6+k2pi và x<>7/6pi+k2pi

b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)

mà 1+cosx>=0

nên 2-cosx>=0

=>cosx<=2(luôn đúng)

c ĐKXĐ: tan x>0

=>kpi<x<pi/2+kpi

d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)

=>cos(x-pi/4)<>1/2

=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi

=>x<>7/12pi+k2pi và x<>-pi/12+k2pi

e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi

=>x<>5/6pi+kpi và x<>kpi-pi/4

f: ĐKXĐ: cos^2x-sin^2x<>0

=>cos2x<>0

=>2x<>pi/2+kpi

=>x<>pi/4+kpi/2

 

NV
6 tháng 6 2021

1.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

2.

ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

3. 

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

6 tháng 6 2021

cho hỏi cái này tí nha    \(sin\alpha\)=1/2  và \(cos\alpha\)=\(\dfrac{-\sqrt{3}}{2}\)

thì góc đó là \(\alpha=?\pi\)

6 tháng 8 2021

1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`

Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`

2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`

`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`

3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.

14 tháng 8 2021

Bạn cho mình hỏi tại sao x khác k2\(\pi\) là lý thuyết ở đoạn nào thế ạ?

17 tháng 8 2020

@Nguyễn Việt Lâm giúp em với ạ

NV
23 tháng 9 2020

a.

\(sinx+cosx+\left(sinx+cosx\right)^2+cos^2x-sin^2x=0\)

\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1+2cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\1+2cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)