K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2015

Gọi thời gian người 1, người 2 làm một mình xong công việc lần lượt là x, y ngày (x, y > 0)

Trong một ngày người 1 và người 2 lần lượt làm được và công việc.
suy ra phương trình:


Người 1 làm trong 3 ngày và người 2 làm trong 7,5 ngày lần lượt được và công việc suy ra phương trình:


Giải hệ được x = 18, y = 9. So sánh với điều kiện và kết luận

9 tháng 6 2015

người thứ nhất :18 ngày

người thứ hai :9 ngày phải hông ? kiểm tra giùm nghe

 

15 tháng 2 2019

người 1:18 ngày

ngày 2:9 ngày

15 tháng 2 2019

cậu phải giải lại cái bài toán này đi lập pt hay hệ pt

1 tháng 2 2021

Gọi thời gian người 1 làm thì xog cvc là x(ngày)(x>2)

Thời gian người 2 làm thì xog cvc là y (ngày)(y>2)

Trong 1 ngày: người 1 làm đc 1/x(cvc)

người 2 làm:1/y(cvc)cả 2 làm đc 1/2cvc

Theo bài ra ta có hệ pt: {1/x+1/y=1/2             

                                {4/x+1/y=1

giải ra x=6 ngày, y=3 ngày (tm)

Người thứ nhất làm 1 mk trong 6 ngày xog cvc

người thứ 2 làm 1 mk trong 3 ngày xog cvc

1 tháng 2 2021

Gọi thời gian người thứ nhất làm một mình xong công việc là x ( x>2)

Gọi thời gian người thứ hai làm một mình xong công việc là y ( y>2)

Trong 1 ngày: 

-Người thứ 1 làm được : \(\dfrac{1}{x}\) Công việc

-Người thứ 2 làm được: \(\dfrac{1}{y}\) Công việc

-Cả 2 người làm được \(\dfrac{1}{2}\) Công việc

Ta có PT: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)(1)

-Nếu người nhất làm trong 4 ngày rồi nghỉ, người thứ hai làm tiếp trong một ngày nữa thì xong việc nên ta có PT:

\(\dfrac{4}{x}+\dfrac{1}{y}=1\) (2)

Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{4}{x}+\dfrac{1}{y}=1\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)

Vậy người thứ nhất làm một mình xong công việc trong 6 ngày

Vậy người thứ hai làm một mình xong công việc trong 3 ngày

 

20 tháng 4 2019

Gọi x, y (ngày) lần lượt là thời gian mà người thứ nhất và người thứ hai làm riêng xong công việc. Điều kiện: x > 4, y > 4.

Như vậy, trong 1 ngày người thứ nhất làm được 1/x (công việc), người thứ hai làm được 1/y (công việc).

Trong 1 ngày, cả hai người làm được 1 : 4 = 1/4 (công việc)

Ta có phương trình: 1/x + 1/y = 1/4

Nếu người thứ nhất làm một mình trong 9 ngày rồi người thứ hai đến cùng làm tiếp trong 1 ngày nữa thì xong việc, ta có phương trình:

10/x + 1/y = 1

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: 1/x = 1/12 ⇔ x = 12

1/y = 1/6 ⇔ y = 6

Giá trị của x và y thỏa điều kiện bài toán.

Vậy người thứ nhất làm một mình xong công việc trong 12 ngày, người thứ hai làm một mình xong công việc trong 6 ngày.

20 tháng 7 2022

Sao lại có số 10 vậy bạn , người thứ nhất làm xong 9 ngày mà có số 10 nên mik ko hiểu lắm ??

Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(Điều kiện: x>24)

Thời gian người thứ hai hoàn thành công việc khi làm một mình là:

x-20(ngày)

Trong 1 ngày, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 ngày, người thứ hai làm được: \(\dfrac{1}{x-20}\)(công việc)

Trong 1 ngày, hai người làm được: \(\dfrac{1}{24}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{x-20}=\dfrac{1}{24}\)

\(\Leftrightarrow\dfrac{24\left(x-20\right)}{x\left(x-20\right)}+\dfrac{24x}{24x\left(x-20\right)}=\dfrac{x\left(x-20\right)}{24x\left(x-20\right)}\)

Suy ra: \(x^2-20x=24x-480+24x\)

\(\Leftrightarrow x^2-68x+480=0\)

\(\Delta=\left(-68\right)^2-4\cdot1\cdot480=2704\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{68-52}{2}=8\left(loại\right)\\x_2=\dfrac{68+52}{2}=\dfrac{120}{2}=60\left(nhận\right)\end{matrix}\right.\)

Vậy: Người thứ nhất cần 60 ngày để hoàn thành công việc khi làm một mình

Người thứ hai cần 40 ngày để hoàn thành công việc khi làm một mình

13 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

17 tháng 1 2019

Tại sao lại là 10 phần x