Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian người thứ nhất, người thứ 2 làm công việc đó lần lượt là \(x;y>0\), giờ
Người thứ nhất làm xong ít hơn người thứ 2 là 6 giờ
\(y-x=6\Rightarrow y=x+6\)giờ
Trong 1 giờ đội thứ nhất làm được : \(\dfrac{1}{x}\)công việc
Trong 1 giờ đội thứ 2 làm được : \(\dfrac{1}{y}=\dfrac{1}{x+6}\)công việc
Do 2 người cùng làm 1 công việc thì 4 giờ xong
hay ta có phương trình \(\dfrac{1}{x}+\dfrac{1}{x+6}=\dfrac{1}{4}\Leftrightarrow\dfrac{x+6+x}{x\left(x+6\right)}=\dfrac{1}{4}\)( ĐK : \(x\ne-6;0\))
\(\Rightarrow8x+24=x\left(x+6\right)\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\Leftrightarrow x=6\left(chon\right);x=-4\left(loai\right)\)
\(\Rightarrow y=6+6=12\)
Vậy người thứ nhất làm riêng công việc đó trong 6 giờ
người thứ 2 làm riêng công việc đó trong 12 giờ
Bài 1:
Giả sử người thứ I làm riêng thì sau $a$ giờ thì xong. Khi đó người thứ II làm riêng sau $a+6$ giờ thì xong
Trong 1 giờ:
Người I làm $\frac{1}{a}$ công việc
Người II làm $\frac{1}{a+6}$ công việc
Trong 4 giờ, hai người làm:
$\frac{4}{a}+\frac{4}{a+6}=1$ (công việc)
Với $a>0$ ta dễ dàng tìm được $a=6$ (giờ)
Vậy người I làm riêng mất $6$ giờ, người II làm riêng mất $12$ giờ.
Bài 2:
Thể tích bồn nước là:
$V=S_{đáy}. h=0,42.1,65=0,693(m^3)$
Vậy bồn nước này đựng đầy $0,693$ mét khối nước.
Gọi thời gian người thứ nhất làm riêng công việc đó là \(x\)(giờ) \(x>0\).
Số giờ làm riêng công việc đó của người thứ hai là \(x+5\)(giờ)
Mỗi giờ người thứ nhất làm được số phần công việc là: \(\frac{1}{x}\)(công việc)
Mỗi giờ người thứ hai làm được số phần công việc là: \(\frac{1}{x+5}\)(công việc)
Ta có phương trình:
\(\frac{1}{x}+\frac{1}{x+5}=\frac{1}{6}\)
\(\Leftrightarrow\frac{x+5+x}{x\left(x+5\right)}=\frac{1}{6}\)
\(\Rightarrow x\left(x+5\right)=6\left(2x+5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\left(tm\right)\\x=-3\left(l\right)\end{cases}}\)
Vậy thời gian làm riêng của người thứ nhât là \(10\)giờ, thời gian làm riêng của người thứ hai là \(15\)giờ.