\(\widehat{MAN}=3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Ta có: = - = 80o – 30o = 50o (1)

- ∆MBC là tam giác cân (MB= MC) nên = = 55o (2)

- ∆MAB là tam giác cân (MA=MB) nên = 50o (theo (1))

Vậy = 180o – 2. 50o = 80o

= sđcung BCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđ cung BCD = 2 = 2. 80o = 160o

Mà sđ cung BC = = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ cung BD)

Suy ra = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và = 90o

Suy ra = = 45o (6)

= 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD



11 tháng 4 2017

Ta có: = - = 80o – 30o = 50o (1)

- ∆MBC là tam giác cân (MB= MC) nên = = 55o (2)

- ∆MAB là tam giác cân (MA=MB) nên = 50o (theo (1))

Vậy = 180o – 2. 50o = 80o

= sđcung BCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđ cung BCD = 2 = 2. 80o = 160o

Mà sđ cung BC = = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ cung BD)

Suy ra = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và = 90o

Suy ra = = 45o (6)

= 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD



7 tháng 2 2020

a)Gọi I là trung điểm BC \(\Rightarrow\hept{\begin{cases}OI\perp BC\\BI=CI=\frac{R\sqrt{3}}{2}\end{cases}}\)Ta có\(\sin\widehat{BOI}=\frac{BI}{OB}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\Rightarrow\widehat{BOI}=60^o\) \(\Rightarrow\widehat{BOC}=120^o\)

b) Ta có \(\widebat{BC}=\widehat{BOC}=120^o\) Mà\(\Rightarrow\widehat{BAC}=\frac{\widebat{BC}}{2}\)\(\Rightarrow\widehat{BAC}=60^o\)

25 tháng 4 2017

Hướng dẫn làm bài:

Ta có ˆBPDBPD^ là góc ở ngoài đường tròn (O) nên:

ˆBPD=sđcungBQD−sđcungAC2BPD^=sđcungBQD−sđcungAC2

Ta có ˆAQCAQC^ là góc nội tiếp trong đường tròn (O) nên:

ˆAQC=12sđcungACAQC^=12sđcungAC

Do đó:

ˆBPD+ˆAQC=sđcungBQF−sđcungAC2+sđcungAC2=sđcungBQD2=420+3802=400BPD^+AQC^=sđcungBQF−sđcungAC2+sđcungAC2=sđcungBQD2=420+3802=400

Vậy ˆBPD+ˆAQC=400

25 tháng 4 2017

Giải bài 11 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 11 trang 135 SGK Toán 9 Tập 2 | Giải toán lớp 9