K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)

Mỗi ngày đội 1 làm được phẫn việc là 1/x

Đội 2 làm được số phần việc là 1/y

cả hai đội làm được số phần việc là 1/12

ta có phương trình: 1/x+1/y=1/12(1)

Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc

từ đó ta có phương trình: 5/x+15/y=3/4(2)

Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4

Giải hệ pt ta tìm được x=20; y=30

KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.

Gọi thời gian làm một mình của đội 1 và đội 2 lần lượt là 3x và x

Theo đề, ta có: 1/3x+1/x=1/9

=>x=12

=>Thời gian làm một mình của đội 1 là 36 ngày

27 tháng 5 2017

đội 2  :  2,4 gio

đội 1 :  12 giờ

27 tháng 5 2017

bạn giải chi tiết đi cho mình thao khảo luôn với

NV
18 tháng 1 2024

Gọi thời gian làm 1 mình xong việc của đội 1 là x ngày và của đội 2 là y ngày (với x>10;y>0)

Trong 1 ngày đội 1 làm được \(\dfrac{1}{x}\) phần công việc và đội 2 làm được \(\dfrac{1}{y}\) phần công việc

Do làm riêng đội 1 làm chậm hơn đội 2 là 10 ngày nên ta có:

\(x-y=10\) (1)

Hai đội làm chung trong 1 ngày được \(\dfrac{1}{x}+\dfrac{1}{y}\) phần công việc

Do 2 đội làm chung thì hoàn thành trong 12 ngày nên ta có:

\(12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\) (2)

Từ (1) và (2) ta có hệ:

\(\left\{{}\begin{matrix}x-y=10\\12\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-10\\12\left(x+y\right)=xy\end{matrix}\right.\)

Thế pt trên xuống pt dưới:

\(12\left(x+x-10\right)=x\left(x-10\right)\)

\(\Leftrightarrow x^2-34x+120=0\Rightarrow\left[{}\begin{matrix}x=30\\x=4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow y=x-10=20\)

Vậy đội 1 làm 1 mình xong trong 30 ngày và đội 2 xong trong 20 ngày

Gọi thời gian làm riêng hoàn thành công việc của đội một là x(ngày)

(Điều kiện: x>10)

Thời gian làm riêng hoàn thành công việc của đội 2 là x-10(ngày)

Trong 1 ngày, đội 1 làm được \(\dfrac{1}{x}\left(côngviệc\right)\)

Trong 1 ngày, đội 2 làm được \(\dfrac{1}{x-10}\left(côngviệc\right)\)

Trong 1 ngày, hai đội làm được \(\dfrac{1}{12}\left(côngviệc\right)\)

Do đó, ta có phương trình:

\(\dfrac{1}{x}+\dfrac{1}{x-10}=\dfrac{1}{12}\)

=>\(\dfrac{x-10+x}{x\left(x-10\right)}=\dfrac{1}{12}\)

=>\(x\left(x-10\right)=12\left(2x-10\right)\)

=>\(x^2-10x=24x-120\)

=>\(x^2-34x+120=0\)

=>(x-30)(x-4)=0

=>\(\left[{}\begin{matrix}x-30=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Vậy: Thời gian làm riêng hoàn thành công việc của đội 1 là 30 ngày

Thời gian làm riêng hoàn thành công việc của đội 2 là 30-10=20 ngày

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

Giả sử đội A và B làm riêng thì xong công việc trong lần lượt $a$ và $b$ ngày. ĐK: $a,b>0$

Trong 1 giờ: 

Đội A hoàn thành $\frac{1}{a}$ công việc

Đội B hoàn thành $\frac{1}{b}$ công việc

Theo bài ra ta có: \(\left\{\begin{matrix} \frac{4}{a}+\frac{18}{b}=1\\ \frac{12}{a}+\frac{12}{b}=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{28}\\ \frac{1}{b}=\frac{1}{21}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=28\\ b=21\end{matrix}\right.\)

2 tháng 7 2021

- Gọi thời gian mỗi đội hoàn thành công việc là x; y ( ngày ; x,y > 8 )

- Một ngày đội 1 làm được số phần công việc là : \(\dfrac{1}{x}\) ( phần )

- Một ngày đội 2 làm được số phần công việc là : \(\dfrac{1}{y}\) ( phần )

=> Một ngày hai đội làm được số phần công việc là : \(\dfrac{1}{x}+\dfrac{1}{y}\) ( phần )

Mà nếu làm chung 8 ngày sẽ xong công việc .

\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\left(I\right)\)

- Lại có nếu làm riêng đội 1 nhanh hơn đội 2 12 ngày .

\(\Rightarrow-x+y=12\left(II\right)\)

- Từ 1 và 2 ta được hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\-x+y=12\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=24\\x=12\end{matrix}\right.\) ( TM )

Vậy ...

2 tháng 7 2021

Gọi số ngày hoàn thành công việc riêng của đội 1 là a (a>0) (ngày)

=> Số ngày hoàn thành công việc riêng của đội 2 là a + 12  (ngày)

Số công việc mỗi ngày của đội 1: \(\dfrac{1}{a}\) (công việc)

Số công việc mỗi ngày của đội 2: \(\dfrac{1}{a+12}\) (công việc)

Theo bài ta có

\(8.\left(\dfrac{1}{a}+\dfrac{1}{a+12}\right)=1\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{a+12}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{a+12}{a\left(a+12\right)}+\dfrac{a}{a\left(a+12\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{2a+12}{a^2+12a}=\dfrac{1}{8}\)

\(\Leftrightarrow16a+96=a^2+12a\)

\(\Leftrightarrow a^2-4a-96=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=12\\a=-8\left(loại\right)\end{matrix}\right.\)

Vậy số ngày hoàn thành công việc riêng của đội 1 là 12 ngày, đội 2 là 24 ngày

17 tháng 2 2022

Gọi thời gian làm riêng để hoạn thành công việc lần lượt là a ; b ( a ; b > 0 ) 

Theo bài ra ta có hệ \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{18}\\\frac{6}{a}+\frac{8}{b}=\frac{2}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{45}\\\frac{1}{b}=\frac{1}{30}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=45\\b=30\end{cases}}\left(tm\right)\)

Vậy ... 

16 tháng 2 2022

Gọi thời gian mà đội 1 làm một mình xong cv là x (ngày) x > 0

Gọi thời gian mà đội 2 làm một mình xong cv là y (ngày) y > 0

Một ngày cả hai đội làm được 1/x + 1/y = 1/12 cv (1)

Nếu làm riêng 1 mình đội 1 nhanh hơn đội 2 là 7 ngày nên: x + 7 = y (2)

Giải hệ 2 pt trên ta được x = 21, y = 28