Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)
+ A = 4cm.
+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)
Bài này gia tốc phải là: \(a=-4\sqrt 2(m/s^2)=-400\sqrt 2(cm/s^2)\)
PT dao động: \(x=A\cos\Phi\) (với \(\Phi\) là pha của dao động)
Suy ra gia tốc: \(a=-\omega^2x = -\omega^2.A\cos\Phi\)
Thay vào ta có:
\(-400\sqrt 2=-\omega^2.5.\cos\dfrac{\pi}{4}\)
\(\Rightarrow \omega = 4\pi(rad/s)\)
Chu kì: \(T=2\pi/\omega=0,5s\)
\(1=LC\omega^2=LC4\pi^2f^2\)
\(C=\frac{1}{L4\pi^2f^2}=\frac{8.10^{-6}}{\pi}F\)
\(\rightarrow A\)
3 vecto của 3 dao động tạo thành tam giác đều (vì cùng biên độ)
Pha ban đầu của dao động thứ 2 là: \(\phi=-\frac{\pi}{12}-\frac{\pi}{3}=-\frac{5\pi}{12}\left(rad\right)\)