K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

A=\(\frac{10^{2015}+1}{10^{2016}+1}\)=>10A=\(\frac{10.\left(10^{2015}+1\right)}{10^{2016}+1}\)\(\frac{10^{2016}+10}{10^{2016}+1}\)=\(\frac{\left(10^{2016}+1\right)+9}{10^{2016}+1}\)=\(\frac{10^{2016}+1}{10^{2016}+1}+\frac{9}{10^{2016}+1}\)=1+\(\frac{9}{10^{2016}+1}\)

B=\(\frac{10^{2016}+1}{10^{2017}+1}\)=>10B=\(\frac{10.\left(10^{2016}+1\right)}{10^{2017+1}}=\frac{10^{2017}+10}{10^{2017}+1}\)\(\frac{\left(10^{2017}+1\right)+9}{10^{2017}+1}\)=\(\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}\)= 1+\(\frac{9}{10^{2017}+1}\)

Vì \(10^{2016}+1< 10^{17}+1\)=>\(\frac{9}{10^{2016}+1}\)>\(\frac{9}{10^{2017}+1}\)nên \(1+\frac{9}{10^{2016}+1}>1+\frac{9}{10^{2017}+1}\)=>10A>10B

Vậy A>B

7 tháng 5 2017

Cảm ơn bạn nhìu nhé.

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

14 tháng 1 2016

Ta có: \(10A=10.\left(\frac{10^{2014}+1}{10^{2015}+1}\right)=\frac{10^{2015}+10}{10^{2015}+1}=\frac{10^{2015}+1+9}{10^{2015}+1}=1+\frac{9}{10^{2015}+1}\)

\(10B=10.\left(\frac{10^{2015}+1}{10^{2016}+1}\right)=\frac{10^{2016}+10}{10^{2016}+1}=\frac{10^{2016}+1+9}{10^{2016}+1}=1+\frac{9}{10^{2016}+1}\)

Vì 1 = 1; 9 = 9 ta so sánh mẫu:

Ta có: 102015 < 102016 => 102015+1 < 102016+1

=> \(1+\frac{9}{10^{2015}+1}>1+\frac{9}{10^{2016}+1}\)

=> 10A > 10B

=> A > B.

29 tháng 4 2020

Ta có: 

\(10A=\frac{10^{2015}+20200}{10^{2015}+2020}=1+\frac{18180}{10^{2015}+2020}\)

\(10B=\frac{10^{2016}+20200}{10^{2016}+2020}=1+\frac{18180}{10^{2016}+2020}\)

Vì \(10^{2016}+2020>2^{2015}+2020\)

=> \(\frac{18180}{10^{2016}+2020}< \frac{18180}{10^{2015}+2020}\)

=> \(1+\frac{18180}{10^{2016}+2020}< 1+\frac{18180}{10^{2015}+2020}\)

=> 10B < 10A

=> B<A

29 tháng 4 2020

\(A=\frac{10^{2014}+2020}{10^{2015}+2020}\)\(< \) \(B=\frac{10^{2015}+2020}{10^{2016}+2020}\)

chúc bạn học tốt

study well

4 tháng 3 2018

Hình như bn viết sai đề,là 1/x.(x+1) chứ

4 tháng 3 2018

ukm mik xin lỗi mik viết sai đề đó

24 tháng 7 2015

Ta co : 

A.10

=10^2015+10/10^2015+1

=1+9/10^2015+1

B.10

=1+9/10^2016+1

Ta nhận thấy rang :

9/10^2015+1>9/10^2016+1  

A.10>B.10  

Vay :A>B

16 tháng 11 2020

nani?