Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
a)\(f\left(x\right)=5+3x^2-x-2x^2\)
\(f\left(x\right)=x^2-x+5\)
\(g\left(x\right)=3x+3-x-x^2\)
\(g\left(x\right)=-x^2+2x+3\)
b)\(f\left(x\right)+g\left(x\right)=x^2-x+5-x^2+2x+3\)
\(f\left(x\right)+g\left(x\right)=x+8\)
c) \(f\left(x\right)-H\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow H\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^2-x+5-\left(-x^2+2x+3\right)\)
\(\Leftrightarrow H\left(x\right)=x^2-x+5+x^2-2x-3\)
\(\Leftrightarrow H\left(x\right)=2x^2-3x+2\)
#H
a) \(f\left(x\right)=5x^3-7x^2+x+7+4x^5\)
\(f\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7+4.\left(-1\right)^5\)
\(f\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7+\left(-4\right)\)
\(f\left(-1\right)=-10\)
\(\Rightarrow f\left(x\right)=-10\)
\(g\left(x\right)=4x^5-3x^3-7x^2+2x+5\)
\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)
\(g\left(0\right)=5\)
\(\Rightarrow g\left(x\right)=0\)
\(h\left(x\right)=x^2-4x-5\)
\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4.\left(-\frac{1}{2}\right)-5\)
\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)
\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)
\(\Rightarrow h\left(x\right)=-\frac{11}{4}\)
\(f\left(-1\right)=5\left(-1\right)^3-7\left(-1\right)^2+\left(-1\right)+7+4\left(-1\right)^5\)
\(f\left(-1\right)=-5-7-1+7-4\)
\(f\left(-1\right)=-10\)
\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)
\(g\left(0\right)=0-0-0+0+5\)
\(g\left(0\right)=5\)
\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4\left(-\frac{1}{2}\right)-5\)
\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)
\(h\left(-\frac{1}{2}\right)=\frac{1}{4}+2-5\)
\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)
\(m\left(x\right)+h\left(x\right)=g\left(x\right)-5\)
\(\Leftrightarrow m\left(x\right)=g\left(x\right)-h\left(x\right)-5\)
\(\Leftrightarrow m\left(x\right)=4x^2+3x+1-3x^2+2x+3-5\)
\(\Leftrightarrow m\left(x\right)=x^2+5x-1\)