K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x+5\right)^2-\left(x-1\right)^2\)

\(=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2+10x+25\right)-\left(x^2-2x+1\right)\)

\(=2x^3-16x^2+32x-x^3+4x-5x^2+20+2\left(x^2+10x+25\right)-\left(x-1\right)^2\)

\(=x^3-21x^2+36x+20+2x^2+20x+50-x^2+2x-1\)

\(=x^3-20x^2+58x+69\)

26 tháng 7 2016

a) Mình không hiểu đề cho lắm bucminh

b) \(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)  

   \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\) 

   \(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)  

   \(=x^3-2x^2+5x\)  

c) \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

   \(=2\left(2x+5\right)^2+3\left(4x+1\right)\left(4x-1\right)\)

    \(=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)

    \(=8x^2+40x+50+48x^2-3\)

    \(=56x^2+40x+47\)

d) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

   \(=x\left(x^2-16\right)-\left(x^4-1\right)\)

   \(=x^3-16x-x^4+1\)

e) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)

    \(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)

    \(=y^4-81-y^4+4\)

    \(=-77\)

26 tháng 7 2016

Hỏi đáp Toán

29 tháng 9 2019

a) (2x - 1)(x^2 - 1 + 1) = 2x^3 - 3x^2 + 2

(2x - 1).x^2 = 2x^3 - 3x^2 + 2

2x^3 - x^2 = 2x^3 - 3x^2 + 2

-x^2 = -3x^2 + 2

2x^2 = 2

x^2 = 1

=> x = 1; -1

b) (x + 2)(x + 2) - (x - 2)(x - 2) = 8x

(x + 2)^2 - (x - 2)^2 = 8x

x^2 + 4x + 4 - x^2 + 4x - 4 = 8x

8x = 8x

=> x thuộc N*

c) (x + 1)(x + 2)(x + 5) - x^3 - 8x^2 = 27

x^3 + 5x^2 + 2x^3 + 10x + x^2 + 5x + 2x + 10x - x^3 - x^2 = 27

17x + 10 = 27

17x = 27 - 10

17x = 17

=> x = 1

d) (x + 1)(x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0

x^3 + 2x^2 + 4x + x^2 + 2x + 4 - x^3 - 3x^2 + 16 = 0

6x + 20 = 0

6x = -20

x = -20/6

=> x = -10/3

21 tháng 6 2018

1) \(\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\)

\(\Leftrightarrow9x^2-16-4x^2-20x-25=x^2-10x+25+4x^2+4x+1-x^2+2x+x^2-2x+1\)

\(\Leftrightarrow9x^2-4x^2-x^2-4x^2+x^2-x^2-20x+10x-4x-2x+2x=25+1+1+16+25\)

\(\Leftrightarrow-14x=68\)

\(\Leftrightarrow x=-\dfrac{34}{7}\)

Vậy................

2) \(\left(x-5\right)\left(x+5\right)-\left(x-2\right)^3-7x^2+\left(x+1\right)\left(x^2-x+1\right)=\left(x+3\right)^3-\left(x^3+9x^2\right)\)

\(=x^2-25-x^3+6x^2-12x+8-7x^2+x^3+1=x^3+9x^2+27x+27-x^3-9x^2\)

\(\Leftrightarrow x^2+6x^2-7x^2-9x^2+9x^2-x^3+x^3-x^3+x^3-12x-27x=27-1-8+25\)

\(\Leftrightarrow-39x=43\)

\(\Leftrightarrow x=-\dfrac{43}{39}\)

Vậy................

21 tháng 6 2018

1. ( 3x + 4 )( 3x - 4 ) - ( 2x + 5 )2 = ( x - 5 )2 + ( 2x + 1 )2 - ( x2 - 2x ) + ( x - 1 )2

⇔ 9x2 - 16 - 4x2 - 20x - 25 = x2 - 10x + 25 + 4x2 + 4x + 1 - x2 + 2x + x2 - 2x + 1

⇔ - 18x - 68 = 0

⇔ -2( 9x + 34 ) = 0

⇔ x = \(\dfrac{34}{9}\)

KL.....................

2) ( x - 5 )( x + 5 ) - ( x - 2 )3 - 7x2 + ( x + 1 )( x2 - x + 1 ) = ( x + 3 )3 - ( x3 + 9x2 )

⇔ x2 - 25 - x3 + 6x2 - 12x + 8 - 7x2 + x3 + 1 = x3 + 9x2 + 27x + 27 - x3 - 9x2

⇔ - 39x- 43 = 0

⇔ 39x + 43 = 0

⇔ x =\(-\dfrac{43}{39}\)

KL...................

19 tháng 6 2021

a, \(\left(x-15\right)\left(x+15\right)-\left(x+2\right)^2-\left(x-5\right)^2\)

\(=x^2-225-x^2-4x-4-x^2+10x-25\)

\(=-x^2+6x-254\)

b, \(\left(2x-1\right)\left(2x+1\right)+\left(x+9\right)^2-\left(x-3\right)^2\)

\(=4x^2-1+x^2+18x+81-x^2+6x-9=4x^2+24x+71\)

c, \(\left(7x-3\right)^2-\left(x-5\right)\left(x+5\right)-\left(2x+4\right)^2\)

\(=49x^2-42x+9-x^2+25-4x^2-16x-16=44x^2-58x+18\)

11 tháng 7 2019

a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)

vì \(\left(x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)

Hay \(A\ge11>0;\forall x\)

phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a

b)\(4x^2+8x+5\)

 \(\left(2x\right)^2+2.2x.2+2^2+1\)

\(=\left(2x+2\right)^2+1\)

c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

11 tháng 7 2019

a) \(x^2+2x+11\)

\(=\left(x^2+2x+1\right)+10\)

\(=\left(x+1\right)^2+10\ge10\)

\(\text{Vì }\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+10\ge10\Rightarrow\left(x+1\right)^2+10>0\)

\(\Leftrightarrow x^2+2x+11>0\)

Vậy biểu thước x2+2x+11 luôn có giá trị dương

25 tháng 12 2020

a, \(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+15\)

\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+15=15\)

1 tháng 8 2017

b)(x+2)(x^2-2x+4)-x(x^2-2)=15

=x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15

=2x+8=15

2x=15-8

2x=7

x=7/2

vậy x = 7/2