Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình không hiểu đề cho lắm
b) \(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)
\(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+5x\)
c) \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)
\(=2\left(2x+5\right)^2+3\left(4x+1\right)\left(4x-1\right)\)
\(=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)
\(=8x^2+40x+50+48x^2-3\)
\(=56x^2+40x+47\)
d) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
e) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-4\right)\)
\(=y^4-81-y^4+4\)
\(=-77\)
a) (2x - 1)(x^2 - 1 + 1) = 2x^3 - 3x^2 + 2
(2x - 1).x^2 = 2x^3 - 3x^2 + 2
2x^3 - x^2 = 2x^3 - 3x^2 + 2
-x^2 = -3x^2 + 2
2x^2 = 2
x^2 = 1
=> x = 1; -1
b) (x + 2)(x + 2) - (x - 2)(x - 2) = 8x
(x + 2)^2 - (x - 2)^2 = 8x
x^2 + 4x + 4 - x^2 + 4x - 4 = 8x
8x = 8x
=> x thuộc N*
c) (x + 1)(x + 2)(x + 5) - x^3 - 8x^2 = 27
x^3 + 5x^2 + 2x^3 + 10x + x^2 + 5x + 2x + 10x - x^3 - x^2 = 27
17x + 10 = 27
17x = 27 - 10
17x = 17
=> x = 1
d) (x + 1)(x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0
x^3 + 2x^2 + 4x + x^2 + 2x + 4 - x^3 - 3x^2 + 16 = 0
6x + 20 = 0
6x = -20
x = -20/6
=> x = -10/3
1) \(\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\)
\(\Leftrightarrow9x^2-16-4x^2-20x-25=x^2-10x+25+4x^2+4x+1-x^2+2x+x^2-2x+1\)
\(\Leftrightarrow9x^2-4x^2-x^2-4x^2+x^2-x^2-20x+10x-4x-2x+2x=25+1+1+16+25\)
\(\Leftrightarrow-14x=68\)
\(\Leftrightarrow x=-\dfrac{34}{7}\)
Vậy................
2) \(\left(x-5\right)\left(x+5\right)-\left(x-2\right)^3-7x^2+\left(x+1\right)\left(x^2-x+1\right)=\left(x+3\right)^3-\left(x^3+9x^2\right)\)
\(=x^2-25-x^3+6x^2-12x+8-7x^2+x^3+1=x^3+9x^2+27x+27-x^3-9x^2\)
\(\Leftrightarrow x^2+6x^2-7x^2-9x^2+9x^2-x^3+x^3-x^3+x^3-12x-27x=27-1-8+25\)
\(\Leftrightarrow-39x=43\)
\(\Leftrightarrow x=-\dfrac{43}{39}\)
Vậy................
1. ( 3x + 4 )( 3x - 4 ) - ( 2x + 5 )2 = ( x - 5 )2 + ( 2x + 1 )2 - ( x2 - 2x ) + ( x - 1 )2
⇔ 9x2 - 16 - 4x2 - 20x - 25 = x2 - 10x + 25 + 4x2 + 4x + 1 - x2 + 2x + x2 - 2x + 1
⇔ - 18x - 68 = 0
⇔ -2( 9x + 34 ) = 0
⇔ x = \(\dfrac{34}{9}\)
KL.....................
2) ( x - 5 )( x + 5 ) - ( x - 2 )3 - 7x2 + ( x + 1 )( x2 - x + 1 ) = ( x + 3 )3 - ( x3 + 9x2 )
⇔ x2 - 25 - x3 + 6x2 - 12x + 8 - 7x2 + x3 + 1 = x3 + 9x2 + 27x + 27 - x3 - 9x2
⇔ - 39x- 43 = 0
⇔ 39x + 43 = 0
⇔ x =\(-\dfrac{43}{39}\)
KL...................
a, \(\left(x-15\right)\left(x+15\right)-\left(x+2\right)^2-\left(x-5\right)^2\)
\(=x^2-225-x^2-4x-4-x^2+10x-25\)
\(=-x^2+6x-254\)
b, \(\left(2x-1\right)\left(2x+1\right)+\left(x+9\right)^2-\left(x-3\right)^2\)
\(=4x^2-1+x^2+18x+81-x^2+6x-9=4x^2+24x+71\)
c, \(\left(7x-3\right)^2-\left(x-5\right)\left(x+5\right)-\left(2x+4\right)^2\)
\(=49x^2-42x+9-x^2+25-4x^2-16x-16=44x^2-58x+18\)
a)Đặt A= \(x^2+2x+11=\left(x+1\right)^2+10\)
vì \(\left(x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+1\right)^2+11\ge11;\forall x\)
Hay \(A\ge11>0;\forall x\)
phần b và c mình sẽ giải ra hằng đẳng thức lập luận tương tự phần a
b)\(4x^2+8x+5\)
\(\left(2x\right)^2+2.2x.2+2^2+1\)
\(=\left(2x+2\right)^2+1\)
c) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)
a, \(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+15\)
\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+15=15\)
b)(x+2)(x^2-2x+4)-x(x^2-2)=15
=x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15
=2x+8=15
2x=15-8
2x=7
x=7/2
vậy x = 7/2
\(2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x+5\right)^2-\left(x-1\right)^2\)
\(=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2+10x+25\right)-\left(x^2-2x+1\right)\)
\(=2x^3-16x^2+32x-x^3+4x-5x^2+20+2\left(x^2+10x+25\right)-\left(x-1\right)^2\)
\(=x^3-21x^2+36x+20+2x^2+20x+50-x^2+2x-1\)
\(=x^3-20x^2+58x+69\)