Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi p/s trên là S
\(\Rightarrow\) \(S=\frac{\left(42-15\right)-\left(x-15\right)}{x-15}=\frac{27}{x-15}-\frac{x-15}{x-15}=\frac{27}{x-15}-1\)
Mà \(x\in Z\)\(\Rightarrow\) \(MinS< 0\)
\(\Rightarrow\) \(\frac{27}{x-15}=-27\Rightarrow x-15=-1\Rightarrow x=14\)
Khi đó , \(MinS=\frac{42-14}{14-15}=\left(-27\right)-1=\left(-28\right)\)
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
áp dụng BĐT cô-si ta có:
\(A=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\left(\sqrt{x}+3\right)}}-6\)
\(=2\sqrt{25}-6=4\)
Dấu"=" xảy ra khi:
\(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\)
\(\Rightarrow\left(\sqrt{x}+3\right)^2=25\)
\(\Rightarrow\sqrt{x}+3=5\text{ hoặc }\sqrt{x}+3=-5\left(\text{vô lí}\right)\)
\(\sqrt{x}=2\)
\(\Rightarrow x=4\)
Vậy GTNN của A là 4 tại x=4
Ta có /x+1/ >/ 0 với mọi x
=> A>/ 5 với mọi x
=>Amax=5
Dấu "=" xảy ra<=>x+1=0<=>x=-1
B=(x^2+3)+12/(x^2+3)=1+(12/x^2+3)
ta có x^2+3 >/ 3 với mọi x
=>12/x^2+3 </ 12/3=4 với mọi x
=>B </ 1+4=5 với mọi x
Dấu "=" xảy ra<=>x=0
Vậy...