K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

\(P=\sqrt[]{9x^2-6x+1}+\sqrt[]{25-30x+9x^2}\)

\(\Leftrightarrow P=\sqrt[]{\left(3x-1\right)^2}+\sqrt[]{\left(5-3x\right)^2}\)

\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\)

\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)

Vậy \(GTNN\left(P\right)=4\)

26 tháng 8 2023

P = 4

14 tháng 8 2017

\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}+2011\)

\(Q=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}+2011\)

\(Q=\left|3x-1\right|+\left|5-3x\right|+2011\)

Đặt \(Q'=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)

Đẳng thức xảy ra \(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)

\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)

\(\Rightarrow Min_Q=Min_{Q'}+2011=4+2011=2015\)

14 tháng 8 2017

Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)

Q = \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)

Q = \(3x-1+3x-5+2011\)

Q = \(6x+2005\)

19 tháng 7 2017

\(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)

\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)

\(=\left|3x-1\right|+\left|5-3x\right|\)

\(\ge\left|3x-1+5-3x\right|=4\)

27 tháng 8 2015

Ta có \(9x^2-6x+1=\left(3x-1\right)^2,25-30x+9x^2=\left(5-3x\right)^2.\)

Suy ra \(B=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4.\) (Ở đây ta sử dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|,\) với dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)).

Mà khi \(x=\frac{1}{3}\) thì \(B=4.\) Vậy giá trị nhỏ nhất của B là 4.

 

\(B=\left|3x-1\right|+\left|5-3x\right|>=\left|3x-1+5-3x\right|=4\)

Dấu '=' xảy ra khi (3x-1)(3x-5)<=0

=>1/3<=x<=5/3

7 tháng 6 2017

Ta có :

\(\sqrt{9x^2-6x+2}=\sqrt{\left(9x^2-6x+1\right)+1}=\sqrt{\left(3x-1\right)^2+1}\ge\sqrt{1}=1\)

\(\sqrt{45x^2-30x+9}=\sqrt{5\left(9x^2-6x+1\right)+4}=\sqrt{5\left(3x-1\right)^2+4}\ge\sqrt{4}=2\)

\(\sqrt{6x-9x^2+8}=\sqrt{-\left(9x^2-6x+1\right)+9}=\sqrt{-\left(3x-1\right)^2+9}\le3\)

\(\Rightarrow VT\ge3\ge VP\)

mÀ đề lại cho \(VT=VP\) \(\Rightarrow\hept{\begin{cases}\sqrt{\left(3x-1\right)^2+1}=1\\\sqrt{\left(3x-1\right)^2+4}=2\\\sqrt{-\left(3x-1\right)^2+9}=3\end{cases}\Rightarrow x=\frac{1}{3}}\)

Vậy \(x=\frac{1}{3}\)

7 tháng 6 2017

x=1/3 nha

NV
3 tháng 11 2019

ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{9-\left(3x-1\right)^2}\)

Do \(\left(3x-1\right)^2\ge0\Rightarrow\left\{{}\begin{matrix}VT\ge\sqrt{1}+\sqrt{4}=3\\VP\le\sqrt{9}=3\end{matrix}\right.\)

\(\Rightarrow VT\ge VP\)

Dấu "" xảy ra khi và chỉ khi \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)

Vậy pt có nghiệm duy nhất \(x=\frac{1}{3}\)