\(A=-2x^2+4xy-6y^2-4y+5\)

Ai nhanh được tick nhé!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

A = - 2x2 + 4xy - 6y2 - 4y + 5

= (- 2x2 + 4xy - 2y2) + (- 4y2 - 4y - 1) + 6

= - 2(x - y)2 - (2y + 1)2 + 6 \(\le\)6

Đạt được khi x = y = - 0,5

9 tháng 12 2018

1

a) x+ 4y+ 4xy - 16 

=(x2 + 4xy + 4y2) - 16

=(x+2y)- 16 

=(x+2y-4)(x+2y+4)

b)x2 + y2 - 2x + 4y + 5 =0

<=> x- 2x + 1 + y- 4y + 4=0
<=> (x-1)2 + (y-2)2 =0 
<=> x=1 và y=2

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

3 tháng 10 2016

a, 4 - x2 +2x = -(x2-2x+1)+3

                    =-(x-1)2 +3

vì -(x-1)2 <= 0 vs mọi x =>-(x-1)2 +3 <=vs mọi x 

=>-(x-1)2 +3 <= 3

dâu ''='' xay ra khi va chi khi x-1=0 =>x=1

vay ....

b,4x - x= -(x2-4x+4)-4

              =-(x -2)2 -4

 vi -(x-2)2<=0 vs mọi x suy ra -(x-2)2 -4 <=0

=>-(x-2)2 -4 <=-4

dau = xay ra khi va chi khi x-2=0 =>x=2

vậy......

 

 

 

 

 

 

 

 

 

 

.

4 tháng 10 2016

câu c 

NV
4 tháng 11 2019

\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)

\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)

\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)

\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)

\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)

\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 1:

a)

\(A=x^2+y^2-xy-3y+2016=(x^2-xy+\frac{y^2}{4})+(\frac{3y^2}{4}-3y+3)+2013\)

\(=(x-\frac{y}{2})^2+3(\frac{y}{2}-1)^2+2013\)

\(\geq 2013\)

Vậy GTNN của $A$ là $2013$. Giá trị này đạt được khi \(\left\{\begin{matrix} x-\frac{y}{2}=0\\ \frac{y}{2}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\end{matrix}\right.\)

b)

\(B=2x^2+5y^2+4xy-6+5x-9\)

\(=5(y^2+\frac{4}{5}xy+\frac{4}{25}x^2)+\frac{6}{5}x^2+5x-15\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x^2+\frac{25}{6}x+\frac{25^2}{12^2})-\frac{485}{24}\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x+\frac{25}{12})^2-\frac{485}{24}\geq \frac{-485}{24}\)

Vậy GTNN của $B$ là $\frac{-485}{24}$

Giá trị này đạt được khi \(\left\{\begin{matrix} y+\frac{2}{5}x=0\\ x+\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{25}{12}\\ y=\frac{5}{6}\end{matrix}\right.\)

c)

\(C=x^2+xy+y^2-3x-3y+2018\)

\(=\frac{4x^2+4xy+4y^2-12x-12y+8072}{4}=\frac{(4x^2+4xy+y^2)+3y^2-12x-12y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+3y^2-6y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+9+3(y^2-2y+1)+8060}{4}=\frac{(2x+y-3)^2+3(y-1)^2+8060}{4}\)

\(\geq \frac{8060}{4}=2015\)

Vậy $C_{\min}=2015$. Giá trị đạt được khi \(\left\{\begin{matrix} 2x+y-3=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

a)
\(-A=x^2+4y^2-2x+4y-5=(x^2-2x+1)+(4y^2+4y+1)-7\)

\(=(x-1)^2+(2y+1)^2-7\geq -7\)

\(\Rightarrow A\leq 7\)

Vậy GTLN của $A$ là $7$.

Giá trị này đạt được khi \(\left\{\begin{matrix} x-1=0\\ 2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{-1}{2}\end{matrix}\right.\)

b)

ĐKĐB \(\Leftrightarrow B+2x^2+10y^2-6xy-4x+3y-2=0\)

\(\Leftrightarrow 2x^2-2x(3y+2)+(10y^2+3y-2+B)=0\)

Coi đây là PT bậc 2 ẩn $x$. Vì dấu "=" tồn tại nên PT luôn có nghiệm

\(\Rightarrow \Delta'=(3y+2)^2-2(10y^2+3y-2+B)\geq 0\)

\(\Leftrightarrow B\leq \frac{-11y^2+6y+8}{2}=\frac{\frac{97}{11}-11(y-\frac{3}{11})^2}{2}\leq \frac{97}{22}\)

Vậy $B_{\max}=\frac{97}{22}$

\(A=x^2+2x+3=\left(x+1\right)^2+2>=2\)

Dấu '=' xảy ra khi x=-1

\(B=-\left(x^2+4x-1\right)\)

\(=-\left(x^2+4x+4-5\right)\)

\(=-\left(x+2\right)^2+5< =5\)

Dấu '=' xảy ra khi x=-2

\(C=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21< =21\)

Dấu '=' xảy ra khi x=-4

\(D=-\left(x^2+x-1\right)\)

\(=-\left(x^2+x+\dfrac{1}{4}-\dfrac{5}{4}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}< =\dfrac{5}{4}\)

Dấu '=' xảy ra khi x=-1/2

23 tháng 11 2017

\(Câu\text{ }1:\\ A=-2x^2-y^2-2xy+4x+2y+5\\ =-x^2-x^2-y^2-2xy+2x+2x+2y-1-1+7\\ =-\left(x^2+2xy+y^2\right)+\left(2x+2y\right)-1-\left(x^2-2x+1\right)+7\\ =-\left(x+y\right)^2+2\left(x+y\right)-1-\left(x-1\right)^2+7\\ =-\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-\left(x-1\right)^2+7\\ =-\left(x+y-1\right)^2-\left(x-1\right)^2+7\\ =-\left[\left(x+y-1\right)^2+\left(x-1\right)^2\right]+7\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \left(x+y-1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-1\right)^2+\left(x+y-1\right)^2\ge0\forall x;y\\ \Rightarrow-\left[\left(x-1\right)^2+\left(x+y-1\right)^2\right]\le0\forall x;y\\ \Rightarrow A=-\left[\left(x-1\right)^2+\left(x+y-1\right)^2\right]+7\le7\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }khi:\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(x+y-1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y+1-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\\ Vậy\text{ }A_{\left(Max\right)}=7\text{ }khi\text{ }\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(Câu\text{ }2:\\ B=2x^2+4y^2+4xy+2x+4y+9\\ =x^2+x^2+4y^2+4xy+2x+4y+1+8\\ =\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+x^2+1+8\\ =\left(x+2y\right)^2+2\left(x+2y\right)+1+x^2+8\\=\left[\left(x+2y\right)^2+2\left(x+2y\right)+1\right]+x^2+8\\ =\left(x+2y+1\right)^2+x^2+8\\ Do\text{ }x^2\ge0\forall x\\ \left(x+2y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x+2y+1\right)^2+x^2\ge0\forall x;y\\ \Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\forall x;y\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\left\{{}\begin{matrix}x^2=0\\\left(x+2y+1\right)^2=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x+2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\\ Vậy\text{ }B_{\left(Min\right)}=8\text{ }khi\text{ }\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right. \)

\(\)

Chữa đề: \(A=-2x^2-y^2-2xy+4x+2y+5\)