K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

21 tháng 3 2020

a.ĐK: 2x2+1\(\ne0\) \(\forall x\)

Để phương trình bằng 0 thì 4x-8=0 ( Vì 2x2+1 >0 với mọi x)

\(\Leftrightarrow x=2\) (TM)

Vậy ...

b.ĐK: x-3\(\ne0\) \(\Leftrightarrow x\ne3\)

Để phương trình bằng 0 thì x2-x-6=0 (Vì x-3\(\ne0\))

\(\Leftrightarrow\left[{}\begin{matrix}x=2\:\left(TM\right)\\x=-3\:\left(TM\right)\end{matrix}\right.\)

Vậy ...

c. ĐK: x\(\ne\)2

\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\Leftrightarrow\frac{x+5}{3\left(x-2\right)}-\frac{1}{2}=\frac{2x-3}{2\left(x-2\right)}\)

\(\Leftrightarrow\frac{2\left(x+5\right)-3\left(x-2\right)}{6\left(x-2\right)}=\frac{3\left(2x-3\right)}{6\left(x-2\right)}\)

\(\Leftrightarrow2x+10-3x+6=6x-9\) (x\(\ne\)2)

\(\Leftrightarrow x=\frac{25}{7}\left(TM\right)\)

Vậy ...

d. ĐK: \(x\ne\pm\frac{1}{3}\)

\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\Leftrightarrow\frac{12}{1-9x^2}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{1-9x^2}\)

\(\Leftrightarrow12=1-6x+9x^2-1-6x-9x^2\) (\(x\ne\pm\frac{1}{3}\))

\(\Leftrightarrow x=-2\:\left(TM\right)\)

Vậy...

a) Ta có: \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)

\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\)

\(=\frac{x\left(x+1\right)}{2x\left(x+3\right)}+\frac{2\cdot\left(2x+3\right)}{2x\left(x+3\right)}\)

\(=\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+5x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}\)

\(=\frac{x\left(x+2\right)+3\left(x+2\right)}{2x\left(x+3\right)}\)

\(=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)

b) Ta có: \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)

\(=\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)

\(=\frac{3x}{x\left(2x+6\right)}-\frac{x-6}{x\left(2x+6\right)}\)

\(=\frac{3x-x+6}{x\left(2x+6\right)}=\frac{2x+6}{x\left(2x+6\right)}=\frac{1}{x}\)

c) Ta có: \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)

\(=\frac{5\left(x+2\right)\cdot2\cdot\left(2-x\right)}{4\cdot\left(x-2\right)\cdot\left(x+2\right)}\)

\(=\frac{5\cdot2\cdot\left(2-x\right)}{-4\left(2-x\right)}=\frac{5\cdot2}{-4}=\frac{-5}{2}\)

d) Ta có: \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)

\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3x}{x\left(x+4\right)\cdot2\left(2-x\right)}\)

\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3}{2\left(x+4\right)\cdot\left(2-x\right)}=\frac{3\left(1-4x^2\right)}{2\left(-x^2-2x+8\right)}\)

\(=\frac{3-12x^2}{-2x^2-4x+16}\)

27 tháng 3 2020

a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)

\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne-3;x\ne0\right)\)

\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{4x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)

b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne0;x\ne-3\right)\)

\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)

c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\) \(\left(ĐKXĐ:x\ne\pm2\right)\)

\(=\frac{-5\left(x-2\right)}{2\left(x-2\right)}=\frac{-5}{2}\)

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3

NV
15 tháng 3 2020

ĐKXĐ: ...

\(\Leftrightarrow\frac{2x}{x^2-3x+12}+\frac{6x}{x^2+2x+12}=1\)

\(\Leftrightarrow\frac{2}{x+\frac{12}{x}-3}+\frac{6}{x+\frac{12}{x}+2}=1\)

Đặt \(x+\frac{12}{x}-3=t\)

\(\Rightarrow\frac{2}{t}+\frac{6}{t+5}=1\Leftrightarrow2\left(t+5\right)+6t=t\left(t+5\right)\)

\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{12}{x}-3=-2\\x+\frac{12}{x}-3=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x+12=0\\x^2-8x+12=0\end{matrix}\right.\) (casio)

Bài 1:

d)ĐKXĐ: \(x\ne8\)

Ta có: \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)

\(\Leftrightarrow\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3x-24}=0\)

\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3\left(x-8\right)}=0\)

MTC=24(x-8)

\(\Leftrightarrow\frac{36}{24\left(x-8\right)}+\frac{72x-480}{24\left(x-8\right)}+\frac{3x-24}{24\left(x-8\right)}-\frac{104x-816}{24\left(x-8\right)}=0\)

\(\Leftrightarrow36+72x-480+3x-24-104x+816=0\)

\(\Leftrightarrow348-29x=0\)

\(\Leftrightarrow-29x+348=0\)

\(\Leftrightarrow x=\frac{-348}{-29}=12\)

Vậy: x=12

e) ĐKXĐ: \(x\ne\pm1\)

Ta có: \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)

\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4x+4}+\frac{12x-1}{4-4x}=0\)

\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}+\frac{12x-1}{4\left(1-x\right)}=0\)

MTC=4(x+1)(x-1)

\(\Leftrightarrow\frac{24}{4\left(x-1\right)\left(x+1\right)}+\frac{20x^2-20}{4\left(x-1\right)\left(x+1\right)}-\frac{8x^2-9x+1}{4\left(x-1\right)\left(x+1\right)}-\frac{12x^2-11x-1}{4\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2+11x+1=0\)

\(\Leftrightarrow20x+4=0\)

\(\Leftrightarrow20x=-4\)

\(\Leftrightarrow x=-\frac{4}{20}=-0,2\)(loại)

Vậy: x không có giá trị

g) Ta có: \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)

\(\Leftrightarrow\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}}{\frac{x-1}{x-1}+\frac{x+1}{x-1}}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2x}{x-1}}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-1}{2x}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{4x\cdot\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\cdot2x}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{2}=0\)

MTC=2(x+1)

\(\Leftrightarrow\frac{2}{2\left(x+1\right)}-\frac{x+1}{2\left(x+1\right)}=0\)

\(\Leftrightarrow2-x+1=0\)

\(\Leftrightarrow1-x=0\)

\(\Leftrightarrow x=1\)(loại vì không thỏa mãn ĐKXĐ)

Vậy: x không có giá trị

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

f)

$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$

$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$

$=\frac{x(x^2+1)}{(2-3x)^2}$
g)

$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$

$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$

h)

$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$

$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$

$=\frac{5x}{6(x-1)}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

d)

$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$

$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$

$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$

$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)

$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$

$=\frac{-3(x+7)}{2x+1}$