K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{7-x}+\sqrt{x+1}\right)^2\)

\(\le\left(1+1\right)\left(7-x+x+1\right)=16\)

\(\Rightarrow VT^2\le16\Rightarrow VT\le4\)

Lại có: \(VP=x^2-6x+13\)

\(=x^2-6x+9+4=\left(x-3\right)^2+4\ge4\)

Suy ra \(VT\le VP=4\) xảy ra khi \(VT=VP=4\)

\(\Rightarrow\left(x-3\right)^2+4=4\Rightarrow x-3=0\Rightarrow x=3\)

5 tháng 8 2017

cho áp dụng bdt t chưa hiểu lắm

NV
11 tháng 1 2019

1/ \(\dfrac{5}{3}\le x\le\dfrac{7}{3}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{3x-5}=a>0\\\sqrt{7-3x}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=2\\17-6x=2b^2+3\\6x-7=2a^2+3\end{matrix}\right.\)

Mặt khác theo BĐT Bunhiacốpxki:

\(a+b=\sqrt{3x-5}+\sqrt{7-3x}\le\sqrt{\left(1+1\right)\left(3x-5+7-3x\right)}=2\)

\(\Rightarrow0< a+b\le2\)

Ta được hệ pt:

\(\left\{{}\begin{matrix}a^2+b^2=2\\\left(2b^2+3\right).a+\left(2a^2+3\right)b=2+8ab\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2-2ab=2\\2ab^2+3a+2a^2b+3b-8ab-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2ab=\left(a+b\right)^2-2\\2ab\left(a+b\right)+3\left(a+b\right)-8ab-2=0\end{matrix}\right.\)

\(\Rightarrow\left(\left(a+b\right)^2-2\right)\left(a+b\right)+3\left(a+b\right)-4\left(a+b\right)^2+6=0\)

\(\Leftrightarrow\left(a+b\right)^3-4\left(a+b\right)^2+\left(a+b\right)+6=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b=-1< 0\left(l\right)\\a+b=2\\a+b=3>2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow a+b=2\) , dấu "=" xảy ra khi và chỉ khi:

\(3x-5=7-3x\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

NV
11 tháng 1 2019

2/ ĐKXĐ: \(x\ne\pm2\)

\(\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-\left(\dfrac{15}{x^2-4}+5\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2+4\left(\dfrac{x+1}{x-2}\right)^2-5.\left(\dfrac{x^2-1}{x^2-4}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)^2-\left(\dfrac{x^2-1}{x^2-4}\right)-4\left[\left(\dfrac{x^2-1}{x^2-4}\right)-\left(\dfrac{x+1}{x-2}\right)^2\right]=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)-4\left(\dfrac{x+1}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)

\(\Leftrightarrow\left(\dfrac{x-1}{x+2}-\dfrac{4\left(x+1\right)}{x-2}\right)\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}=\dfrac{4\left(x+1\right)}{x-2}\\\dfrac{x-1}{x+2}=\dfrac{x+1}{x-2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=4\left(x^2+3x+2\right)\\x^2-3x+2=x^2+3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2+15x+6=0\\6x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-5+\sqrt{17}}{2}\\x=\dfrac{-5-\sqrt{17}}{2}\end{matrix}\right.\)

8 tháng 6 2017

2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)

\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)

9 tháng 6 2017

Ta có:  a+ b= \(\frac{-1+\sqrt{2}}{2}\)    +    \(\frac{-1-\sqrt{2}}{2}\)=  -1

a*b  =  \(\frac{-1+\sqrt{2}}{2}\)*   \(\frac{-1-\sqrt{2}}{2}\)=   -\(\frac{1}{4}\)

a2  +   b2  =  (a+ b)2  -  2ab  = 1+ \(\frac{1}{2}\)=  \(\frac{3}{2}\)

a4  +  b4  =    (a2  +   b2 )2  -  2a2b2  =  \(\frac{9}{4}\)-   \(\frac{1}{8}\)=  \(\frac{17}{8}\)

a3  +   b3  =  ( a + b)3  -  3ab(a + b )  = -1-\(\frac{3}{4}\)\(\frac{-7}{4}\)

vay a7  +  b7  = (a3 +  b3 )(a4 + b4 ) -a3b3(a+b)=  \(\frac{-7}{4}\)*   \(\frac{17}{8}\)-  (-\(\frac{1}{64}\))  * (-1)  = \(\frac{-239}{64}\)

19 tháng 3 2019

Áp dụng BĐT Bunhiacopxki cho cặp số \(\sqrt{x-2};\sqrt{4-x}\), ta có :

\(VT=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{\left(1+1\right)\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\)

Dấu " = " xảy ra \(\Leftrightarrow x=3\)

20 tháng 12 2015

cai nay la hag dag thuc phan tih ra la dk

25 tháng 3 2016

pt<=>căn((x-1/2)^2+75/4)+căn(2(x-1/2)^2+3(x+2)^2)+căn((x-1/2)^2+3(2x+3/2)^2)>=3*căn3(x+2)

dấu = xãy ra khi x=1/2

26 tháng 12 2019

\(\text{Condition}:-1\le x\le7\)

Đặt:\(\left\{{}\begin{matrix}a=\sqrt{7-x}\ge0\\b=\sqrt{x+1}\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=\sqrt{20-a^2b^2}\\a^2+b^2=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2+2ab-12=0\\a^2+b^2=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(ab+1+\sqrt{13}\right)\left(ab+1-\sqrt{13}\right)=0\\a^2+b^2=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=\sqrt{13}-1\\a^2+b^2=8\end{matrix}\right.\) \(\left(ab+\sqrt{13}+1>0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt{6+2\sqrt{13}}\\ab=\sqrt{13}-1\end{matrix}\right.\)

you giải cái này đi

3 tháng 9 2019

Trả lời :

Con a giai pt vế trái rồi nhân căn bình phương cả 2 vế

Con b cũng giải pt vế phải chuyển vế rồi bình phương cả 2 vế

Chắc vậy

k bt 

6 tháng 10 2019

pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)

<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)

<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)

Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)

\(\sqrt{6a+1}-a=-1\)

<=> \(\sqrt{6a+1}=a-1\)

=> \(6a+1=a^2-2a+1\)

<=> \(a^2-2a-6a+1-1=0\)

<=>\(a^2-8a=0\) <=>a(a-8)=0

=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)

9 tháng 10 2019

阮芳邵族 bạn có thể thấy trong căn luôn > hoặc = 1 => bt trong căn >0

=>luôn t/m với mọi x.