K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 12 2021

Đặt \(\sqrt{x^2-5x+5}=t>0\)

\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất của pt

\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

30 tháng 3 2016

Đặt :

\(t=\sqrt{x^2-5x+5}\left(t\ge0\right)\)

Bất phương trình trở thành :

\(\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\le2\)

Xét \(f\left(t\right)=\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\) trên \(\left(0;+\infty\right)\)

Do \(t\ge0\) nên \(\log_2\left(t+1\right)\) và \(\log_3\left(t^2+2\right)\) đều là các hàm số đồng biến, do đó f(t) đồng biến trên  \(\left(0;+\infty\right)\)

Lại có f(1)=2, từ đó suy ra \(t\le1\)
Giải ra được :
\(1\le x\)\(\le\frac{5-\sqrt{5}}{2}\) hoặc \(\frac{5-\sqrt{5}}{2}\le x\) \(\le4\)
NV
11 tháng 12 2021

Đặt \(\sqrt{x^2-3x+2}=t\ge0\)

\(\Rightarrow log_3\left(t+2\right)+5^{t^2-1}-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_3\left(t+2\right)+5^{t^2-1}-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+2\right)ln3}+2t.5^{t^2-1}.ln5>0\) ; \(\forall t\ge0\)

\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất

\(\Rightarrow\sqrt{x^2-3x+2}=1\)

\(\Rightarrow...\)

29 tháng 3 2016

Điều kiện :

\(\begin{cases}x^2-4x+5>0\\3+\log_2\left(x^2-4x+5\right)\ge0\\5-\log_2\left(x^2-4x+5\right)\ge0\end{cases}\)

\(\Leftrightarrow x^2-4x+5\le2^5\)

\(\Leftrightarrow2-\sqrt{29}\le x\)\(\le2+\sqrt{29}\)

Đặt  \(\begin{cases}u=\sqrt{3+\log_2\left(x^2-4x+5\right)}\\v=\sqrt{5-\log_2\left(x^2-4x+5\right)}\end{cases}\)  \(\left(v,u\ge0\right)\)

Khi đó ta có hệ phương trình :

\(\begin{cases}u^2+v^2=8\\u+2v=6\end{cases}\)

Giải ra ta được :

\(\begin{cases}u=2\\v=2\end{cases}\) hoặc \(\begin{cases}u=\frac{2}{5}\\v=\frac{14}{5}\end{cases}\)

Từ đó suy ra \(\log_2\left(x^2-4x+5\right)=1\) hoặc \(\log_2\left(x^2-4x+5\right)=\frac{-71}{25}\) và tìm được 4 nghiệm của phương trình

24 tháng 3 2016

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

24 tháng 3 2016

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

NV
1 tháng 3 2020

ĐKXĐ: \(-1< x< 2\)

Khi đó:

\(\Leftrightarrow log_2\left(2-x\right)\left(2x+2\right)-2log_2\left(m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\right)\le0\)

\(\Leftrightarrow log_2\frac{\sqrt{\left(2-x\right)\left(2x+2\right)}}{m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)}\le0\)

\(\Rightarrow\frac{\sqrt{\left(2-x\right)\left(2x+2\right)}}{m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)}\le1\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}\le m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}+\frac{x}{2}-4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\le m\)

Đặt \(\sqrt{2-x}+\sqrt{2x+2}=t\Rightarrow\sqrt{3}\le t\le3\)

\(t^2=x+4+2\sqrt{\left(2-x\right)\left(2x+2\right)}\Rightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}+\frac{x}{2}=\frac{t^2}{2}-2\)

\(\Rightarrow\frac{t^2}{2}-4t-2\le m\)

Xét hàm \(f\left(t\right)=\frac{t^2}{2}-4t-2\) trên \(\left[\sqrt{3};3\right]\)

\(\Rightarrow f\left(t\right)_{min}=f\left(3\right)=-\frac{19}{2}\Rightarrow m_{min}=-\frac{19}{2}\)