Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK: \(6x^2-12x+7\ge0\) (*)
\(PT\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\6x^2-12x+7=x^4-4x^3+4x^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\x^4-4x^3-2x^2+12x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\\left(x-1\right)^2\left(x^2-2x-7\right)=0\end{matrix}\right.\) \(\Rightarrow x=1\pm2\sqrt{2}\) (thỏa mãn ĐK)
Vậy...
a/ ĐKXĐ: \(x\ne\left\{-\frac{2}{3};\frac{1}{3}\right\}\)
\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow3x=-15\Rightarrow x=-5\)
b/ ĐKXĐ: \(x\ne\left\{-\frac{4}{3};1\right\}\)
\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2+37x+28=12x^2-7x-5\)
\(\Leftrightarrow44x=-33\Rightarrow x=-\frac{3}{4}\)
c/ ĐKXĐ: \(x\ne\left\{-\frac{1}{4};0\right\}\)
\(\Leftrightarrow\frac{3\left(x^2-1\right)}{4x+1}+\frac{2\left(1-x^2\right)}{x}-\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{3}{4x+1}-\frac{2}{x}-1\right)=0\)
TH1: \(x^2-1=0\Rightarrow x=\pm1\)
TH2: \(\frac{3}{4x+1}-\frac{2}{x}-1=0\Leftrightarrow3x-2\left(4x+1\right)-x\left(4x+1\right)=0\)
\(\Leftrightarrow4x^2+6x+2=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
a/ ĐKXĐ: ...
\(\Leftrightarrow\frac{x+1}{2\left(x^2-1\right)}+\frac{3}{x^2-1}=\frac{1}{4}\)
\(\Leftrightarrow\frac{x+7}{x^2-1}=\frac{1}{2}\Leftrightarrow2x+14=x^2-1\)
\(\Leftrightarrow x^2-2x-15=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
b/ ĐKXĐ: ...
Đặt \(\frac{x-1}{x}=a\)
\(a-\frac{3}{2a}=-\frac{5}{2}\Leftrightarrow2a^2+5a-3=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-3\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x-1}{x}=-3\\\frac{x-1}{x}=\frac{1}{2}\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left(x+2\right)\left(2x+3\right)-\left(2x-3\right)}{4x^2-9}=\frac{4x^2-9-\left(2x^2-x-4\right)}{4x^2-9}\)
\(\Leftrightarrow2x^2+5x+9=2x^2+x-5\)
\(\Leftrightarrow4x=-14\Rightarrow x=-\frac{7}{2}\)
ĐKXĐ: \(x^2+4x+2\ne0\)
Nhận thấy \(x=0\) không phải nghiệm, phương trình đã cho tương đương:
\(\frac{12}{x+\frac{2}{x}+4}-\frac{3}{x+\frac{2}{x}+2}=1\)
Đặt \(x+\frac{2}{x}+2=a\Rightarrow x+\frac{2}{x}+4=a+2\) ta được:
\(\frac{12}{a+2}-\frac{3}{a}=1\Leftrightarrow12a-3\left(a+2\right)=a\left(a+2\right)\)
\(\Leftrightarrow a^2-7a+6=0\Rightarrow\left[{}\begin{matrix}a=1\\a=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{2}{x}+2=1\\x+\frac{2}{x}+2=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2-4x+2=0\end{matrix}\right.\) \(\Rightarrow...\)
Ok 👍👍👍👍👍👍🏾