K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

\(3x^2+x+1=\left(3x+1\right)\sqrt{x^2+1}\) (ĐKXĐ : \(x>-\frac{1}{3}\) )

\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\sqrt{x^2+1}-\left(3x+1\right)\)

\(\Leftrightarrow3x^2-2x=\left(3x+1\right)\left(\sqrt{x^2+1}-1\right)\)

\(\Leftrightarrow x\left(3x-2\right)=\left(3x+1\right)\left(\frac{x^2+1-1}{\sqrt{x^2+1}+1}\right)\)

\(\Leftrightarrow x\left(3x-2\right)=x\left(3x+1\right)\left(\frac{1}{\sqrt{x^2+1}+1}\right)\)

\(\Leftrightarrow x\left(3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2-\frac{3x+1}{\sqrt{x^2+1}+1}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x\approx1,2818\end{cases}}\)

Thử lại, ta có x = 0 thoả mãn nghiệm phương trình.

7 tháng 7 2016

Dòng thứ 5 từ trên xuống hình như nhầm thì phải

4 tháng 9 2016

Ptrình này vô nghiệm bn ạ

7 tháng 8 2020

hở -_-

4 tháng 9 2019

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.