K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

Ta có

\(2xy^2+x+y+1-x^2-2y^2-xy=0\)

<=>\(\left(2xy^2-2y^2\right)+\left(y-xy\right)+\left(x-x^2\right)=-1\)

<=>\(2y^2\left(x-1\right)-y\left(x-1\right)-x\left(x-1\right)=-1\)

<=>\(\left(2y^2-y-x\right)\left(x-1\right)=-1\)

đến đây tự giải tiếp nha lắc 

Tick nha

24 tháng 3 2019

Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với OnlineMath Em tham khảo tại link này nhé!

16 tháng 6 2016

Ta sẽ chuyển hết ẩn về một vế, vế còn lại là hằng số. Sau đó dựa vào sự tương ứng về dấu, ta ghép các hạng tử để xuất hiện nhân tử chung.

\(2y^2x+x+y-x^2-2y^2-xy=-1\Leftrightarrow2y^2x-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Từ đó ta có bảng sau:

x-11-1
x20
\(2y^2-x-y\)-11
y\(\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)\(\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
 \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)\(\hept{\begin{cases}x=0\\y=1\end{cases}}\)
16 tháng 6 2016

2 nghiệm là : ( 2 : -1/2 ) và ( 0; -1/2 ) cũng thỏa mãn sao ko được nhắc đến nhỉ ?. giải thích hộ mình cái ? 

16 tháng 6 2016

2y2x + x + y + 1 = x+ 2y+ xy (1)

<=> 2y2x - 2y2 + x - 1 + y - xy + 1 - x= -1

<=> 2y2(x - 1) + x - 1 - y(x - 1) - (x - 1)(x + 1) = -1

<=> (x-1)(2y2 - y - x - 1 + 1) = -1

<=> (x - 1)(2y2 - y - x) = -1

Vậy (x - 1) và (2y2 - y - x) là ước của -1 :

  • Nếu x-1=-1 => x = 0 => 2y2 - y - 0 = 1 => 2y2 - y - 1 = 0 ko có nghiệm nguyên của y - Loại
  • Nếu x - 1 = 1 =>x = 2 => 2y2 - y - 2 = -1 => 2y2 - y - 1 = 0 ko có nghiệm nguyên của y - Loại

Vậy phương trình không có nghiệm nguyên x;y.

1 tháng 7 2015

Ta có: 2y2 + x + y + 1 = x 2 + 2y2 + xy
2y2(x - 1) – x(x - 1) – y(x - 1) + 1 = 0 (1)
-Vì x = 1 không phải là nghiệm của (1). Khi đó chia hai vế của (1) cho x – 1, ta có: (2) 
-Với x, y nguyên. Suy ra: nguyên nên x – 1 = 1 hoặc x – 1 = -1 
-Thay x = 2 và x = 0 vào (2), ta có: y = 1 hoặc y = và y Z.
Vậy phương trình đã cho có hai nghiệm nguyên là (2;1) và (0;1).