K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2015

x;y;z có vai trò như nhau;

Giả sử x</y</ z 

=> 2z ( 2x-z +2y-z+1) = 22.517

=>z =2

=>2x-2 +2y-2 =516

=>2y-2(2x-y +1) =22.129

=>y-2=2 => y =4

=>2x-4 =128 =27

=> x -4 =7 => x =11

Vậy (x;y;z) =(11;4;7);(4;7;11);(11;7;4);(4;11;7);(7;4;11);(7;11;4)

Xem sai nữa không?

10 tháng 12 2015

Nguyễn Quốc Khánh  tui cx lm tek nhưng xét nhìu lắm

25 tháng 11 2015

Vậy phương trình chỉ có nghiệm tầm thường (0;0;0) 

25 tháng 11 2015

vì 2xyz chẵn => X^2+y^2+z^2 chẵn

2TH

TH1: giả sử x chẵn,y,z đều lẻ thì

x=2a,y=2b+1,z=2c+1

thay vào phương trình đã cho thì được VT lẻ , VP chẵn nên mẫu thuẫn

TH2: 3 số đều chẵn

x=2a,y=2b,z=2c

=> 4(a^2+b^2+c^2)=16abc

=> a^2+b^2+c^2=4abc

cứ như thế,pt lùi vô hạn, nghiệm bằng 0

x=y=z=0

13 tháng 12 2015

Ta có

\(2xy^2+x+y+1-x^2-2y^2-xy=0\)

<=>\(\left(2xy^2-2y^2\right)+\left(y-xy\right)+\left(x-x^2\right)=-1\)

<=>\(2y^2\left(x-1\right)-y\left(x-1\right)-x\left(x-1\right)=-1\)

<=>\(\left(2y^2-y-x\right)\left(x-1\right)=-1\)

đến đây tự giải tiếp nha lắc 

Tick nha

11 tháng 12 2015

x2 = y3(y-1)(y+1)

=>x2 = y2y(y-1) (y+1)  

y(y-1)(y+1) là tich 3 số liên tiếp và là số chính phương .

không có 3 số liên tiếp khác không là số chính phương

=> y =0 hoặc y =1 hoặc y =-1

=> x =0

Vậy (x;y) = (0;0);(0;1);(0;-1)

 

11 tháng 12 2015

Nguyễn Quốc Khánh uk 

Nguyễn Nhật Minh lại sai oi

15 tháng 10 2016

\(x^2+y^2+z^2=1980\Rightarrow\hept{\begin{cases}\left|x\right|\le\sqrt{1980}\\\left|y\right|\le\sqrt{1980}\\\left|z\right|\le\sqrt{1980}\end{cases}}\)

Vì x,y,z nguyên nên \(-44\le x,y,z\le44\)

Mặt khác theo BĐT Bunhiacopxki, ta có \(5940=3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\Rightarrow-77\le x+y+z\le77\)

Mặt khác ta có : \(y^2+z^2\ge\frac{1}{2}\left(y+z\right)^2\) \(\Rightarrow1980-x^2\ge\frac{1}{2}\left(-77-x\right)^2\Leftrightarrow-27\le x\le-25\)

Mình đã thu gọn lại khoảng cách giữa các nghiệm rồi bạn tự làm tiếp nhé :)

LƯU Ý : nghiệm nguyên nên có thể có cả nghiệm dương lẫn nghiệm âm .