Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 = y3(y-1)(y+1)
=>x2 = y2y(y-1) (y+1)
y(y-1)(y+1) là tich 3 số liên tiếp và là số chính phương .
không có 3 số liên tiếp khác không là số chính phương
=> y =0 hoặc y =1 hoặc y =-1
=> x =0
Vậy (x;y) = (0;0);(0;1);(0;-1)
Ta có
\(2xy^2+x+y+1-x^2-2y^2-xy=0\)
<=>\(\left(2xy^2-2y^2\right)+\left(y-xy\right)+\left(x-x^2\right)=-1\)
<=>\(2y^2\left(x-1\right)-y\left(x-1\right)-x\left(x-1\right)=-1\)
<=>\(\left(2y^2-y-x\right)\left(x-1\right)=-1\)
đến đây tự giải tiếp nha lắc
Tick nha
x;y;z có vai trò như nhau;
Giả sử x</y</ z
=> 2z ( 2x-z +2y-z+1) = 22.517
=>z =2
=>2x-2 +2y-2 =516
=>2y-2(2x-y +1) =22.129
=>y-2=2 => y =4
=>2x-4 =128 =27
=> x -4 =7 => x =11
Vậy (x;y;z) =(11;4;7);(4;7;11);(11;7;4);(4;11;7);(7;4;11);(7;11;4)
Xem sai nữa không?
vì 2xyz chẵn => X^2+y^2+z^2 chẵn
2TH
TH1: giả sử x chẵn,y,z đều lẻ thì
x=2a,y=2b+1,z=2c+1
thay vào phương trình đã cho thì được VT lẻ , VP chẵn nên mẫu thuẫn
TH2: 3 số đều chẵn
x=2a,y=2b,z=2c
=> 4(a^2+b^2+c^2)=16abc
=> a^2+b^2+c^2=4abc
cứ như thế,pt lùi vô hạn, nghiệm bằng 0
x=y=z=0
a. \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)
<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)
Đặt: x + y = u; xy = v => u; v là số nguyên
Ta có: uv - \(u^2+2v=1\)
<=> \(u^2-uv-2v+1=0\)
<=> \(u^2+1=v\left(2+u\right)\)
=> \(u^2+1⋮2+u\)
=> \(u^2-4+5⋮2+u\)
=> \(5⋮2-u\)
=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1
Mỗi trường hợp sẽ tìm đc v
=> x; y
<=> x3 + 3x2 + 3x + 1 = 0
<=> (x+1)3 = 0
<=> x+ 1 = 0
<=> x = -1
PT có nghiệm là x = -1
ta co:
3a2 chia hết cho 3 và: 5203 chia 3 dư 2
mà: 3a2+(b-1)2=5203
\(\Rightarrow\)(b-1)2 chia 3 dư 1 (vo lí)
chia 3 dư 2 nha