Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ráng làm nốt rồi đi ngủ thoyy
1.
a) ĐK: \(x\ge2\)
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x+3\right)\left(x-1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\varnothing\end{matrix}\right.\)
Vậy...
b) \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)
\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+\left(x+8\right)-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x-1\right)\sqrt{x+8}+\left(x+8\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-\sqrt{x+8}-x+1\right)\left(2x+1-\sqrt{x+8}+x-1\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+8}+2\right)\left(3x-\sqrt{x+8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{x+8}\\3x=\sqrt{x+8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\)
Vậy...
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
Nhân cả 2 vế với \(\sqrt{2}\) ta được :
\(pt\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)
Ta có : \(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)
\(=\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x-1}+1+1-\sqrt{2x-1}\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{2x-1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le1\)
2) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\cdot\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: \(x=-y\Leftrightarrow x^{29}=-y^{29}\Leftrightarrow x^{29}+y^{29}=0\)
Khi đó \(B=0\cdot\left(x^{11}+y^{11}\right)\cdot\left(x^{2013}+y^{2013}\right)=0\)
Tương tự 2 trường hợp còn lại ta đều được \(B=0\)
Vậy \(B=0\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
1.
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\sqrt{\dfrac{\left(\sqrt{2x-3}+1\right)^2}{\left(\sqrt{2x+3}-1\right)^2}}\end{matrix}\right.\)\(\Leftrightarrow\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{2x-3}+1}{\sqrt{2x+3}-1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\left(\sqrt{2x-3}+1\right)\left(\sqrt{2x+3}+1\right)}{2\left(x+1\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{4x^2-9}+\sqrt{2x-3}+\sqrt{2x+3}+1}{2\left(x+1\right)}\end{matrix}\right.\)
hết tối giải rồi
a) VT bạn bình phương rồi B.C.S sẽ được VT<=2
VP=3x^2-12x+12+2=3(x-2)^2+1>=2
Dấu = xảy ra khi x=2
\(\text{Đk: }1,5\le x\le2,5\)
Áp dụng bđt cauchy ta có:
\(\text{VT }\Leftrightarrow\frac{2x-3+1+1-2x+1}{2}=2\)
Mà: \(\text{VP}=3\left(x-2\right)^2+2\ge2\)
\(\text{ĐT}\Leftrightarrow x=2\)
\(\Rightarrow x=2\)
\(1.x^2-4x-2\sqrt{2x-5}+5=0\left(x>=\dfrac{5}{2}\right)\)
\(\text{⇔}2x-5-2\sqrt{2x-5}+1+x^2-6x+9=0\)
\(\text{⇔}\left(\sqrt{2x-5}-1\right)^2+\left(x-3\right)^2=0\)
\(\text{⇔}\sqrt{2x-5}-1=0\) hoặc \(x-3=0\)
\(\text{⇔}x=3\left(TM\right)\)
KL...........
\(2.x+y+4=2\sqrt{x}+4\sqrt{y-1}\)
\(\text{⇔}x-2\sqrt{x}+1+y-1-4\sqrt{y-1}+4=0\)
\(\text{⇔}\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2=0\)
\(\text{⇔}x=1;y=5\)
KL..........
\(3.\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-5}=\dfrac{1}{2}\left(x+y+z-7\right)\)
\(\text{⇔}2\sqrt{x-2}+2\sqrt{y-3}+2\sqrt{z-5}=x+y+z-7\)
\(\text{⇔}x-2-2\sqrt{x-2}+1+y-3-2\sqrt{y-3}+1+z-5-2\sqrt{z-5}+1=0\)
\(\text{⇔}\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-5}-1\right)^2=0\)
\(\text{⇔}x=1;y=4;z=6\)
KL...........
\(d.Tuong-tự-nhé-bn\)
\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)-6\sqrt{2x-5}+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}-1\right|=4\)
Đến đây lập bảng xét dấu là xong.
. . .
\(\sqrt{x}+\sqrt{y-z}+\sqrt{z-x}=\dfrac{1}{2}\left(y+3\right)\)
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-z}+2\sqrt{z-x}=y+3\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-z-2\sqrt{y-z}+1\right)+\left(z-x-2\sqrt{z-x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-z}-1\right)^2+\left(\sqrt{z-x}-1\right)^2=0\)
Tự làm tiếp nhé.