Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN
Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho
Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)
=> \(m^2-4m+6\ge0\)luôn đúng
Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)
Khi đó
\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)
\(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)
\(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)
\(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)
\(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)
\(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
Để P là số nguyên
=> \(\frac{9}{2m-5}\)là số nguyên
=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)
=> \(m\in\left\{-2;1;2;3;4;7\right\}\)
Kết hợp với ĐK
=> \(m\in\left\{1;2;3;4;7\right\}\)
Vậy \(m\in\left\{1;2;3;4;7\right\}\)
\(2x^2+3mx-\sqrt{2}=0\)
Phương trình có 2 nghiệm phân biệt <=> \(\Delta=\left(3m\right)^2-4\cdot2\cdot\left(\sqrt{2}\right)>0\)
<=> \(9m^2+3\sqrt{2}>0\)(luôn đúng)
=> PT có 2 nghiệm phân biệt x1;x2 với mọi m \(\hept{\begin{cases}x_1+x_2=\frac{-3m}{2}\\x_1x_2=\frac{-\sqrt{2}}{2}\end{cases}}\)
\(M=\left(x_1-x_2\right)^2+\left(\frac{1+x_1^2}{x_1}-\frac{1+x_2^2}{x_2}\right)\)
\(=x_1^2+x_2^2-2x_1x_2+\left[\frac{x_2\left(1+x_1^2\right)-x_1\left(1+x_2^2\right)}{x_1x_2}\right]^2\)
\(=\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left(x_2+x_1+x_1^2x_2-x_1x_2^2\right)^2}{\left(x_1x_2\right)^2}\)
\(=\left(\frac{-3m}{2}\right)^2-4\cdot\left(\frac{\sqrt{2}}{2}\right)+\frac{\left(x_2-x_1\right)^2\cdot\left(1+x_1x_2\right)^2}{\left(x_1x_2\right)^2}\)
\(=\frac{9m^2}{4}+2\sqrt{2}+\frac{\left(\frac{9m^2}{4}+2\sqrt{2}\right)\left(1+\frac{-\sqrt{2}}{2}\right)^2}{\left(\frac{-\sqrt{2}}{2}\right)^2}\)
\(=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{9m^2}{4}+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\)
\(=\frac{9m^2}{4}\left(4-2\sqrt{2}\right)+2\sqrt{2}\left(4-2\sqrt{2}\right)\ge2\sqrt{2}\left(4-2\sqrt{2}\right)\ge8\sqrt{2}-8\)
Dấu "=" xảy ra <=> m=0
Theo định lý Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2+x_3=m+2\\x_1x_2+x_1x_3+x_2x_3=3m\\x_1x_2x_3=1\end{matrix}\right.\)
\(P=x_1^2+x_2^2+x_3^2=\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_1x_3+x_2x_3\right)\)
\(P=\left(m+2\right)^2-6m=m^2-2m+4\)
\(P=\left(m-1\right)^2+3\ge3\)
\(\Rightarrow P_{min}=3\) khi \(m=1\)
ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:
x1 + x2 = \(\dfrac{-b}{a}\) = 6
x1x2 = \(\dfrac{c}{a}\) = 1
a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )
=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)
=> A2 = 1(6 + 2) = 8
=> A = 2\(\sqrt{3}\)
b) bạn sai đề
\(ac< 0\Rightarrow\) phương trình luôn có 2 nghiệm với mọi m
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{3m}{2}\\x_1x_2=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(M=\left(x_1-x_2\right)^2+\left(x_1-x_2-\frac{x_1-x_2}{x_1x_2}\right)^2\)
\(=\left(x_1-x_2\right)^2+\left(x_1-x_2\right)^2\left(1-\frac{1}{x_1x_2}\right)^2\)
\(=\left(x_1-x_2\right)^2+\left(3+2\sqrt{2}\right)\left(x_1-x_2\right)^2\)
\(=\left(4+2\sqrt{2}\right)\left(x_1-x_2\right)^2\)
\(\Rightarrow\frac{M}{4+2\sqrt{2}}=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\frac{9m^2}{4}+2\sqrt{2}\ge2\sqrt{2}\)
\(\Rightarrow M\ge2\sqrt{2}\left(4+2\sqrt{2}\right)=8+8\sqrt{2}\)
Dấu "=" xảy ra khi \(m=0\)
Theo vi-et thì ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{3a-1}{2}\\x_1x_2=-1\end{cases}}\)
Từ đây ta có:
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{3a-1}{2}\right)^2-4.1=\left(\frac{3a-1}{2}\right)^2-4\)
Theo đề bài thì
\(P=\frac{3}{2}.\left(x_1-x_2\right)^2+2\left(\frac{x_1-x_2}{2}+\frac{1}{x_1}-\frac{1}{x_2}\right)^2\)
\(=\frac{3}{2}.\left(x_1-x_2\right)^2+2.\left(x_1-x_2\right)^2\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\)
\(=\left(x_1-x_2\right)^2\left(\frac{3}{2}+2.\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\right)\)
\(=\left(\left(\frac{3a-1}{2}\right)^2-4\right)\left(\frac{3}{2}+2.\left(\frac{1}{2}+1\right)^2\right)\)
\(=6\left(\left(\frac{3a-1}{2}\right)^2-4\right)\ge6.4=24\)
Dấu = xảy ra khi \(a=\frac{1}{3}\)
Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=-\frac{3m}{2}\\x_1x_2=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(P=\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1+x_2+x_1x_2\left(x_1+x_2\right)}{x_1x_2}\right)^2\)
\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{-\frac{3m}{2}-\frac{\sqrt{2}}{2}\left(-\frac{3m}{2}\right)}{-\frac{\sqrt{2}}{2}}\right)^2\)
\(P=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{27-8\sqrt{2}}{4}\right)m^2\)
\(P=\left(\frac{18-9\sqrt{2}}{2}\right)m^2+2\sqrt{2}\ge2\sqrt{2}\)
\(\Rightarrow P_{min}=2\sqrt{2}\) khi \(m=0\)