Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*,với m=-2 thì bạn thay vào pt rồi giải như thường nha
*,\(\Delta\)=[-2(m+1)]2-4(2m-4)=4(m2+2m+1)-8m+16=4m2+8m +4-8m+16=4m2+20>0
=> phương trình luôn có 2 nghiệm phân biệt
*, theo hệ thức Vi et x1+x2=2(m+1);x1x2=2m-4
Ta có A=(x1+x2)2-2x1x2
Bạn thay vào rồi tính ra đc A=4m2+4m +12=(2m)2+4m+1+11=(2m+1)2+11 lớn hơn hoặc = 11
dấu = xảy ra khi 2m+1=0=> m=-1/2
\(\Delta'=1+m\ge0\Rightarrow m\ge-1\)
\(P=x^4_1+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)
\(=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2\left(x_1x_2\right)^2\)
\(=\left(4+2m\right)^2-2m^2\)
\(=2m^2+16m+16\)
\(P=2\left(m^2+8m+7\right)+2=2\left(m+1\right)\left(m+7\right)+2\)
Do \(m\ge-1\Rightarrow\left(m+1\right)\left(m+7\right)\ge0\)
\(\Rightarrow P\ge2\Rightarrow P_{min}=2\) khi \(m=-1\)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Δ=(m-2)^2>=0
vậy pt luôn có 2 no phân biệt với mọi m.
ad định lý viet ta có:
x1+x2= m-4
x1x2=3-m
ta có: x1^2 + x2^2= (x1+x2)^2 - 2x1x2
<=> (m-4)^2-2(3-m)=(m-3)^2+1>=1
dấu = xảy ra khi m=3(tm)
2.Δ=m^2-4m+8=(m-2)^2+4>=4
vậy pt luôn có 2 no phân biệt với mọi gt m
có gì sai mong đc mn chỉ bảo:))
Δ=(m-2)^2>=0
vậy pt luôn có 2 no phân biệt với mọi m.
ad định lý viet ta có:
x1+x2= m-4
x1x2=3-m
ta có: x1^2 + x2^2= (x1+x2)^2 - 2x1x2
<=> (m-4)^2-2(3-m)=(m-3)^2+1>=1
dấu = xảy ra khi m=3(tm)
2.Δ=m^2-4m+8=(m-2)^2+4>=4
vậy pt luôn có 2 no phân biệt với mọi gt m
có gì sai mong đc mn chỉ bảo:))
Ta có: \(x^2-2mx+m-7=0\)
Ta có: \(\Delta'=m^2-m+7>0\)
\(\Rightarrow\)Phương trình luôn có 2 nghiệm phân biệt
Theo vi - et thì (sao không tin ổng, ổng đáng tin cậy lắm đấy :D)
\(\hept{\begin{cases}x_1+x_2=2m\\x_1^2.x_2^2=m-7\end{cases}}\)
Theo đề bài ta có:
\(P=|x_1-x_2|\)
\(\Leftrightarrow P^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(2m-1\right)^2+27\ge27\)
\(\Rightarrow P\ge3\sqrt{3}\)
Dấu = xảy ra khi \(m=\frac{1}{2}\)
x2 - 2mx + m - 7 = 0
(a= 1; b=-2m; c=m-7)
<=> \(\Delta\)= b2-4ac
\(\Leftrightarrow\)\(\Delta\)= (-2m)2 -4\(\times\)1\(\times\)(m-7)
\(\Leftrightarrow\)\(\Delta\)= 4m2-4m+28
= 4m2-4m+28 >= 0
vậy pt có 2 ng với mọi m
Theo đl vi-et, t/c:
s=x1+x2=\(\frac{-b}{a}\)=-2m
p=x1\(\times\)x2=\(\frac{c}{a}\)= m + 7
x1 + x2 + x1 \(\times\)x2
= S + P
= -2m + m+7
= -m +7
min A = 0 khi
-m+7=0
\(\Rightarrow\)m=7
\(\Delta'=\left(m+4\right)^2-m^2+8=8m+24\ge0\Rightarrow m\ge-3\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{matrix}\right.\)
\(A=x_1^2+x_2^2+2x_1x_2-2x_1x_2-\left(x_1+x_2\right)\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)
\(A=4\left(m+4\right)^2-2\left(m^2-8\right)-2\left(m+4\right)\)
\(A=2m^2+30m+72\)
\(A=2\left(m+3\right)\left(m+12\right)\)
Do \(m\ge-3\Rightarrow\left\{{}\begin{matrix}m+3\ge0\\m+12>0\end{matrix}\right.\) \(\Rightarrow2\left(m+3\right)\left(m+12\right)\ge0\)
\(\Rightarrow A_{min}=0\) khi \(m=-3\)