Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ thế này bạn à:
PT1: \(x^2+2013x+2=0.\)Theo Hệ thức Vi-ét ta có: \(x_1+x_2=-2013\\ x_1.x_2=2\)
Tương tự với PT2 ta có:\(x_3+x_4=-2014\\ x_3.x_4=2\)
\(Q=\left[\left(x_1+x_3\right)\left(x_2-x_4\right)\right]\left[\left(x_2_{ }-x_3\right)\left(x_1+x_4\right)\right]\)
\(Q=\left(x_1.x_2+x_2.x_3-x_1.x_4-x_3.x_4\right)\left(x_1.x_2+x_2.x_4-x_1.x_3-x_3.x_4\right)\)
\(Q=\left(2+x_2.x_3-x_1.x_4-2\right)\left(2+x_2.x_4-x_1.x_3-2\right)\)
\(Q=\left(x_2.x_3-x_1.x_4\right)\left(x_2.x_4-x_1.x_3\right)\)
\(Q=x_2.x_3.x_4-x_3.x_1.x_2-x_4.x_1.x_2+x_1.x_3.x_4\)
\(Q=2x_2-2x_3-2x_4+2x_1\)
\(Q=2\left(x_1+x_2\right)-2\left(x_3+x_4\right)\)
\(Q=2.\left(-2013\right)-2.\left(-2014\right)\)
\(Q=2\)
Bài này hay quá. Chúc bạn học tốt nhé
\(\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)-1=0\)
\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)-1=0\)
Đặt \(x^2+8x+7=t\) (1)
\(t\left(t+8\right)-1=0\)
\(\Leftrightarrow t^2+8t-1=0\)
Do \(ac< 0\) nên pt luôn có 2 nghiệm pb: \(\left\{{}\begin{matrix}t_1+t_2=8\\t_1t_2=-1\end{matrix}\right.\)
- Với nghiệm \(t_1\) thay vào (1) ta có:
\(x^2+8x+7-t_1=0\)
Theo Viet, pt này có 2 nghiệm thỏa: \(x_1x_2=7-t_1\)
Với nghiệm \(t_2\) ta có: \(x^2+8x+7-t_2=0\)
Pt này có 2 nghiệm thỏa Viet: \(x_3x_4=7-t_2\)
Do đó: \(x_1x_2x_3x_4=\left(7-t_1\right)\left(7-t_2\right)\)
\(=49-7\left(t_1+t_2\right)+t_1t_2=49-7.8-1=-8\)
Vì P(x) là đa thức bậc 4 và có 4 nghiệm x1 , x2 , x3 , x4 nên P(x) có thể viết thành : \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)
Xét : \(Q\left(x\right)=x^2-4=\left(x-2\right)\left(x+2\right)=\left(2-x\right)\left(-2-x\right)\)
Ta có \(Q\left(x_1\right)=\left(2-x_1\right)\left(-2-x_1\right)\); \(Q\left(x_2\right)=\left(2-x_2\right)\left(-2-x_2\right)\);
\(Q\left(x_3\right)=\left(2-x_3\right)\left(-2-x_3\right)\) ; \(Q\left(x_4\right)=\left(2-x_4\right)\left(-2-x_4\right)\)
Suy ra : \(T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)\)
\(=\left[\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\right].\left[\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\right]\)
\(=P\left(2\right).P\left(-2\right)=-5.3=-15\)
Vậy T = -15
a.
Ta co:
\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)
(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)
(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)
b.
Ta lai co:
\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)
Xet (3)
De phuong trinh dau co 4 nghiem thi PT(3) co nghiem
\(\Rightarrow\Delta^`>0\)
\(\Leftrightarrow4a^2>0\)
\(\Leftrightarrow a>0\)
\(\Rightarrow x_1=1+2a;x_2=1-2a\)
Tuong tu
(4)
\(a>0\)
\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)
\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)
\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)
\(\Rightarrow S< +\infty\)
Giả sử tất cả các pt dưới đây đều có nghiệm
\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)=m\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)=m\)
Đặt \(x^2-5x+4=t\) \(\Rightarrow x^2-5x+4-t=0\) (1)
\(\Rightarrow t\left(t+2\right)=m\Leftrightarrow t^2+2t-m=0\) (2)
Giả sử (2) có 2 nghiệm \(t_1;t_2\)
Theo Viet: \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\)
Thay vào (1): \(\left[{}\begin{matrix}x^2-5x+4-t_1=0\\x^2-5x+4-t_2=0\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=4-t_1\\x_3+x_4=5\\x_3x_4=4-t_2\end{matrix}\right.\)
\(Q=\frac{x_1+x_2}{x_1x_2}+\frac{x_3+x_4}{x_3x_4}=\frac{5}{4-t_1}+\frac{5}{4-t_2}=\frac{40-5\left(t_1+t_2\right)}{\left(4-t_1\right)\left(4-t_2\right)}\)
\(=\frac{40-5\left(t_1+t_2\right)}{t_1t_2-4\left(t_1+t_2\right)+16}=\frac{40-5.\left(-2\right)}{-m-4.\left(-2\right)+16}=\frac{50}{24-m}\)
Vì P(x) có các nghiệm là x1 , x2 , x3 , x4 nên P(x) có thể viết được dưới dạng : \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)
Ta có : \(Q\left(x\right)=x^2-4=\left(x-2\right)\left(x+2\right)=\left(2-x\right)\left(-2-x\right)\)
Xét : \(Q\left(x_1\right)=\left(2-x_1\right)\left(-2-x_1\right)\) ; \(Q\left(x_2\right)=\left(2-x_2\right)\left(-2-x_2\right)\)
\(Q\left(x_3\right)=\left(2-x_3\right)\left(-2-x_3\right)\) ; \(Q\left(x_4\right)=\left(2-x_4\right)\left(-2-x_4\right)\)
Suy ra :
\(T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)=\left[\left(2-x_1\right)\left(2-x_2\right)\left(2-x_3\right)\left(2-x_4\right)\right]\left[\left(-2-x_1\right)\left(-2-x_2\right)\left(-2-x_3\right)\left(-2-x_4\right)\right]\)
\(=P\left(2\right).P\left(-2\right)\)
Bạn thay P(2) và P(-2) vào và tính nhé :)
\(\left\{{}\begin{matrix}x_1+x_2=-2019\\x_1x_2=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_3+x_4=-2020\\x_3x_4=2\end{matrix}\right.\)
\(Q=\left(x_1+x_3\right)\left(x_1+x_4\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\)
\(Q=\left(x_1^2+x_1x_4+x_1x_3+x_3x_4\right)\left(x_2^2-x_2x_4-x_2x_3+x_3x_4\right)\)
\(Q=\left(x_1^2+x_1\left(x_3+x_4\right)+x_3x_4\right)\left(x_2^2-x_2\left(x_3+x_4\right)+x_3x_4\right)\)
\(Q=\left(x_1^2-2020x_1+2\right)\left(x_2^2+2020x_2+2\right)\)
Mặt khác do \(x_1\); \(x_2\) là nghiệm của \(x^2+2019x+2=0\) nên:
\(\left\{{}\begin{matrix}x_1^2+2019x_1+2=0\\x_2^2+2019x_2+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2+2=-2019x_1\\x_2^2+2=-2019x_2\end{matrix}\right.\)
\(\Rightarrow Q=\left(-2019x_1-2020x_1\right)\left(-2019x_2+2020x_2\right)\)
\(Q=-4039x_1.x_2=-4039.2=-8078\)