K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

NV
23 tháng 5 2019

\(\Delta'=\left(m-1\right)^2+4>0\) phương trình luôn có 2 nghiệm pb

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-4\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2\right|=5\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=25\)

\(\Leftrightarrow4\left(m-1\right)^2+8+8=25\)

\(\Leftrightarrow\left(m-1\right)^2=\frac{9}{4}\Rightarrow\left[{}\begin{matrix}m-1=\frac{3}{2}\\m-1=-\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{5}{2}\\m=-\frac{1}{2}\end{matrix}\right.\)

8 tháng 3 2018

a) \(\Delta'=m^2+1>0\forall m\)

Vậy nên phương trình luôn có 2 nghiệm phân biệt.

b) Theo định lý Viet ta có:

\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)

Vậy thì \(x_1^2+x_2^2-x_1.x_2=\left(x_1+x_2\right)^2-2x_1.x_2-x_1.x_2\)

\(=\left(x_1+x_2\right)^2-3x_1.x_2\)

\(=\left(2m\right)^2-3.\left(-1\right)=4m^2+3\)

Để \(x_1^2+x_2^2-x_1.x_2=7\) thì \(4m^2+3=7\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

KL.

7 tháng 3 2018

a, Có : denta = b^2 - 4ac = (-2)^2 - 4.1.(-1) = 8 

denta > 0 => pt luôn có 2 nghiệm phân biệt

Vậy pt luôn có 2 nghiệm phân biệt

Tk mk nha

13 tháng 5 2017

(x1-x2)2=16
<=>(x1+x2)2-4x1x2=16
<=>36-4m=16
<=>m=5( thõa mãn điều kiện delta dương)

15 tháng 11 2019

a) \(\left(\left|x_1-x_2\right|\right)^2=\left(x_1+x_2\right)^2-2x_1x_2\)sau đó em sử dụng định lí viet

=> \(\left|x_1-x_2\right|\)

b)

Viet: \(x_1x_2=3;x_1+x_2=5\)=> pt có 2 nghiệm dương

=> \(\left|x_1\right|+\left|x_2\right|=x_1+x_2\)= 5