K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

\(n^2+n+1=n\left(n+1\right)+1\)

vì n và n +1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2 

=> A chia 2 dư 1 => A lẻ

21 tháng 7 2019

a) Ta có : A = n2 + n + 1

                   = n(n + 1) + 1 (1)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp 

=> n(n + 1) \(\in\)2k (k\(\inℕ\))

=> n(n + 1) + 1 \(\in\)2k + 1 (k\(\inℕ\)

mà 2k + 1 không chia hết cho 2 

=> 2k + 1 là số lể 

=> n2 + n + 1 là số lẻ (đpcm)

b) Từ (1) ta có : A = n(n + 1) + 1

Mà n(n + 1) = ....0 = ...2 = ...6

=> n(n + 1) + 1 =  ....1 = ...3 = ...7

Ta nhận thấy các chữ số tận cùng trên không chia hết cho 5

=> n(n + 1) + 1 không chia hết cho 5

=> A không chia hết cho 5 (đpcm)

24 tháng 7 2015

1)

a)

=10...0+5

=10..05 chia hết cho 5

=1+0+5=6 chia hết cho3

b)10...0+44

=10...04 chia hết cho 2

=1+0+0+4+4=9 chia hết cho 9

 

23 tháng 12 2017

n là stn => n= 3k hoặc n=3k + 1 hoặc n= 3k + 2                         (k thuộc N)

với n=3k

​ ta có : 3k ( 3k + 1) (3k +5)

3k chia hết 3 => 3k ( 3k + 1) ( 3k + 5) chia hết cho 3

hay: n(n+1)(n+5) chia hết cho 3

với n=3k+1

ta có : (3k+1)(3k+1+1)(3k+1+5)

         =(3k+1)(3k+2)(3k+6)

         =3(3k+1)(3k+2)(k+2) chia hết cho 3

hay : n(n+1)(n+5) chia hết cho 3

với n= 3k+ 2

ta có : (3k+2)(3k+2+1)(3k+2+5)

         =(3k+2)(3k+3)(3k+7)

         =3(3k+2)(k+1)(3k+7) chia hết cho 3

hay : n(n+1)(n+5) chia hết cho 3

Vậy với mọi stn n thì n(n+1)(n+5) chia hết cho 3

1 tháng 9 2016

a là một số lẻ nên a^2 là một số lẻ , suy ra a^2 -1 chia hết cho 2  ( 1 ) 

a là một số không chia hết cho 3 nên a^2 chia cho 3 dư 1, suy ra :

a^2 -1 chia hết cho 3 (2)

2 và 3 là hai số  nguyên tố cùng nhau nên từ ( 1 ) và (2 ) suy ra a^2 - 1 chia hết cho 6

28 tháng 2 2018

Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2

Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2

suy ra 13 giao thừa - 11 giao thừa chia hết cho 2

xin các bạn k cho mình nhé

3 tháng 6 2017

Ta có : \(A=10^n+18n-1=10^n-1-9n+27n\)

\(=99...9-9n+27n\)( n c/s 9 )

\(=9\left(11...1-n\right)+27n\)( n c/s 1 )

Vì : \(11...1-n⋮3\Rightarrow9\left(11...1-n\right)⋮27\)

Mà : \(27n⋮27\Rightarrow A⋮27\)

Vậy ...

3 tháng 6 2017

Ta có :

\(A=10^n+18n-1=10^n-1+18n-1+1\\ =\left(10^n-1\right)+18n\\ =\left(10^n-1^n\right)+18n\)

Ta có công thức :

\(a^m-b^m⋮a-b\) với mọi a;b thuộc R

\(\Rightarrow10^n-1^n⋮10-1\\ \Rightarrow10^n-1^n⋮9\\ \Rightarrow10^n-1-18n⋮9\left(\text{đ}pcm\right)\)

13 tháng 12 2017

đồ ngu =200004

13 tháng 12 2017

n2 + n + 1

= n . n + n + 1

= n . ( n + 1 ) + 1

Do n . ( n + 1 ) là hai số  liên tiếp => có tận cùng là : 0;2;6

=> n . ( n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7 không chia hết cho 2

Vậy n2.n+1 không chia hết cho 2