Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge 3\left(\frac{x}{y}+\frac{y}{x}\right)\) <=>\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4 - 3\left(\frac{x}{y}+\frac{y}{x}\right)\ge0\)
Vì \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge 2\)
và \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge 2\)
nên BĐT tương đương 2+ 4- 3x2 \(\ge 0\)
<=> 0\(\ge 0\)
Dấu = xảy ra khi x=y
Đặt \(\frac{x}{y}+\frac{y}{x}=a\) ta có \(lal=l\frac{x}{y}+\frac{y}{x}l=l\frac{x}{y}l+l\frac{y}{x}l\ge2\) ( cô - si )
=> \(a\ge2ora\le-2\)
BĐT <=> \(a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)
(+) với \(a\ge2\) => \(a-1>a-2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)
(+) với \(a\le-2\Rightarrow a-2\le0;a-1\le0\Rightarrow\left(a-2\right)\left(a-1\right)\ge0\)
Vậy BĐT trên luôn đúng
a) Từ đề bài có: \(x\left(x-1\right)\le0\Rightarrow x^2\le x\)
Tương tự hai BĐT còn lại và cộng theo vế suy ra:
\(M=x+y+z-3\ge x^2+y^2+z^2-3=-2\)
Đẳng thức xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó
Is it true?
\(4\le\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\le\sqrt{2\left(x+y\right)}+\frac{x+y}{2}+1\)
\(\Leftrightarrow\)\(8\le x+y+2\sqrt{x+y}\sqrt{2}+2=\left(\sqrt{x+y}+\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{x+y}+\sqrt{2}\ge\sqrt{8}\)
\(\Leftrightarrow\)\(x+y\ge\left(\sqrt{8}-\sqrt{2}\right)^2=2\)
\(\Rightarrow\)\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Dấu "=" xảy ra khi \(x=y=1\)
Bài 1:
ĐKXĐ: \(1\leq x\leq 3\)
Ta có:
\(\sqrt{x-1}+\sqrt{3-x}=3x^2-4x-2\)
\(\Leftrightarrow \sqrt{x-1}-1+\sqrt{3-x}-1=3x^2-4x-4\)
\(\Leftrightarrow \frac{x-2}{\sqrt{x-1}+1}+\frac{2-x}{\sqrt{3-x}+1}=(x-2)(3x+2)\)
\(\Leftrightarrow (x-2)\left(3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}\right)=0(1)\)
Với mọi $1\leq x\leq 3$ ta luôn có \(3x+2\geq 5; \frac{1}{\sqrt{3-x}+1}>0; \frac{1}{\sqrt{x-1}+1}\leq 1\)
\(\Rightarrow 3x+2+\frac{1}{\sqrt{3-x}+1}-\frac{1}{\sqrt{x-1}+1}>0(2)\)
Từ (1);(2) suy ra \(x-2=0\Rightarrow x=2\)
Vậy $x=2$ là nghiệm duy nhất của pt đã cho.
Bài 2:
Với mọi $x,y,z$ nguyên không âm thì :
\(2014^z=2012^x+2013^y\geq 2012^0+2013^0=2\Rightarrow z\geq 1\)
Với $z\geq 1$ thì ta luôn có \(2012^x+2013^y=2014^z\) là số chẵn
Mà \(2013^y\) luôn lẻ nên \(2012^x\) phải lẻ. Điều này chỉ xảy ra khi $x=0$
Vậy $x=0$
Khi đó ta có: \(1+2013^y=2014^z\)
Nếu $z=1$ thì dễ thu được $y=1$
Nếu $z>1$:
Ta có: \(2014^z\vdots 4(1)\)
Mà \(2013\equiv 1\pmod 4\Rightarrow 1+2013^y\equiv 1+1\equiv 2\pmod 4\)
Tức \(1+2013^y\not\vdots 4\) (mâu thuẫn với (1))
Vậy PT có nghiệm duy nhất \((x,y,z)=(0,1,1)\)