\(\overrightarrow{IA}=2\overrightarrow{IB}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

Gọ G là trọng tâm của tam giác ABC.Ta có: \(3\overrightarrow{IG}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=3\overrightarrow{IB}+\overrightarrow{IC}\)\(\overrightarrow{IG}=\overrightarrow{IB}+\dfrac{1}{3}\overrightarrow{IC}\) (*)

\(3\overrightarrow{JG}=\overrightarrow{JA}+\overrightarrow{JB}+\overrightarrow{JC}=3\overrightarrow{JI}+\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=3\overrightarrow{JI}+3\overrightarrow{IB}+\overrightarrow{IC}\Rightarrow\overrightarrow{JG}=\overrightarrow{JI}+\overrightarrow{IB}+\dfrac{1}{3}\overrightarrow{IC}\) (**)

Ta có:

\(\overrightarrow{IA}=2\overrightarrow{IB}\Rightarrow\overrightarrow{IA}=2\left(\overrightarrow{IA}+\overrightarrow{AB}\right)\Rightarrow\overrightarrow{IA}=-2\overrightarrow{AB}\Rightarrow\overrightarrow{IB}=-\overrightarrow{AB}\) (1)

\(\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{AC}=-2\overrightarrow{AB}+\overrightarrow{AC}\) (2)

\(\overrightarrow{JI}=\overrightarrow{JA}+\overrightarrow{AI}=\dfrac{-2}{5}\overrightarrow{AC}+2\overrightarrow{AB}\) (3)

Thế (1),(2),(3) vào (*),(**) tac có

\(\overrightarrow{IG}=\dfrac{-5}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\) (1')

\(\overrightarrow{JG}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{-1}{15}\overrightarrow{AC}\) (2')

Từ (1') và (2') ta có: \(\overrightarrow{IG}=-5\overrightarrow{JG}\) \(\Rightarrow\) 3 điểm I,J,G thẳng hàng . Do đó IJ đi qua trọng tâm của tam giác ABC (đpcm)

A J C B I

14 tháng 6 2018

Lớp 8 học Véc-tơ làm gì cho đau đầu

NV
10 tháng 11 2019

\(\overrightarrow{JA}=-\frac{2}{3}\overrightarrow{JC}\Rightarrow\overrightarrow{JA}=\frac{2}{5}\overrightarrow{CA}\)

\(\overrightarrow{IB}=\overrightarrow{BA}\Rightarrow\overrightarrow{IA}=2\overrightarrow{BA}\)

a/ \(\overrightarrow{IJ}=\overrightarrow{IA}+\overrightarrow{AJ}=2\overrightarrow{BA}-\frac{2}{5}\overrightarrow{CA}=\frac{2}{5}\overrightarrow{AC}-2\overrightarrow{AB}\)

b/Theo tính chất trọng tâm \(3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\Rightarrow\overrightarrow{AG}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

\(\overrightarrow{IG}=\overrightarrow{IA}+\overrightarrow{AG}=2\overrightarrow{BA}+\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{1}{3}\overrightarrow{AC}-\frac{5}{3}\overrightarrow{AB}\)