K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình tự vẽ

a) Ta có : 

AG = GD . Mà GM = \(\frac{1}{2}\) AG 

=> GD = \(\frac{1}{2}\) AG 

Do AG = \(\frac{1}{3}\) AM

=> GD = \(\frac{2}{3}\) AM  (*)

Xét tứ giác GBDC ta có:

BM = MC ( gt ) (1)

GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)

Từ (1)(2) => Tứ giác GBDC là hình bình hành 

=> GC// và =BD ; BG // và =DC 

Xét tam giác ABD ta có:

AP = P B ( gt ) ( 3)

AG = GD ( gt ) (4)

Từ (3)(4) => PG là đường trung bình của tam giác ABD 

=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC 

Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)

Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )

=> NG=\(\frac{2}{3}\)BN (***)

Từ (*)(**)(***) => Đpcm

b) Xét tam giác DBA ta có :

AG = GD ( gt )

BF=FD ( gt ) 

=> GF là đường trung bình bình của tam giác DAB 

=> GF = \(\frac{1}{2}\)AB( 5)

Ta có : DC = GB ( cm ở câu a )

Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)

=> EN = BG => EN= DC 

Mà BG// DC ( cm ở câu a) 

=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )

=> DE=NC

Mà NC =\(\frac{1}{2}\)AC (6)

=> AN= NC 

Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)

Từ (5)(6)(7) => Đpcm

4 tháng 1 2018

a) Do G là trọng tâm của tam giác ABC nên :

\(\dfrac{BG}{BN}=\dfrac{2}{3};\dfrac{GM}{AG}=\dfrac{1}{2}\)Do G là trung điểm của AD NÊN\(\dfrac{GD}{AG}=1\)

\(\Rightarrow GM=MG\) . \(\Rightarrow\dfrac{GD}{AG}=\dfrac{2}{3}\)

Tự cm \(\Delta BMD=\Delta CMG\left(c-g-c\right)\)

=> \(GC=BD\)\(\dfrac{GC}{QC}=\dfrac{2}{3}\) \(\Rightarrow\dfrac{BD}{QC}=\dfrac{2}{3}\)

Vậy \(\dfrac{BG}{BN}=\dfrac{2}{3};\dfrac{BD}{QC}=\dfrac{2}{3};\dfrac{GD}{AG}=\dfrac{2}{3}\)

b) ta có luôn \(BM=\dfrac{1}{2}BC\left(gt\right)\)

Tự chứng minh KG là đường trung bình của Tam giác ABD

=> \(KG=\dfrac{AB}{2}\)

HN = BG = DC ; HN // CD (tự chứng minh ) => \(HD=NC=\dfrac{1}{2}AC\)

Vậy .......

4 tháng 1 2018

A B C M N Q D G K H

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
12 tháng 4 2017

a) So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC BG cắt AC tại N

CG cắt AB tại E

G là trọng tâm của ∆ABC

=> GA = AM

Mà GA = GG’ ( G là trung điểm của AG ‘)

GG'= AM

Vì G là trọng tâm của ∆ABC => GB = BN

Mặt khác : GM = AG ( G là trọng tâm )

AG = GG '(gt)

GM = GG '

M là trung điểm GG’

Do đó ∆GMC = ∆G’MB vì :

GM = GM '

MB = MC

=> BG '= CG

mà CG = CE (G là trọng tâm ∆ABC)

=> BG = EC

Vậy mỗi cạnh của ∆BGG' bằng đường trung tuyến của ∆ABC

b) So sánh các đường trung tuyến của ∆BGG' với cạnh ∆ABC

ta có: BM là đường trung tuyến ∆BGG'

mà M là trung điểm của BC nên BM = BC

Vì IG = BG (I là trung điểm BG)

GN = BG ( G là trọng tâm)

=> IG = GN

Do đó ΔIGG '= ΔNGA (cgc) => IG' = AN => IG '=

- Gọi K là trung điểm BG => GK là trung tuyến ∆BGG'

Vì GE = GC (G là trọng tâm ∆ABC)

=> GE = BG

mà K là trung điểm BG' => KG' = EG

Vì ∆GMC = ∆G'BM (chứng minh trên)

=> (lại góc sole trong)

=> CE // BG' => (đồng vị)

Làm Độ ΔAGE = ΔGG'K (CGC) => AE = GK

mà AE = AB nên GK = AB

Vậy mỗi đường trung tuyến ∆BGG' bằng một nửa cạnh của tam giác ABC song song với nó



a) tam giác ABC vuông tại A

=> AB2 + AC2 = BC2 (định lý py-ta-go)

=> 92 + AC2 = 152

=> AC2 = 225 - 81

=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)

t i c k đúng nhé

a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)

                              => góc C < góc B < góc A (định lý)