K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

M A N B D C E F

a, bn dựa vào hình nha

b,bn kham khảo trên h

c,  Vì EFKH là hinhg bình hành nên để EFKH là hình chữ nhật thì EH⊥EF


Nối AG.

Ta lại có: EH//AG (EH là đường TB)

Và EH⊥EF EF⊥AG AG⊥BC (EF//BC)

mà ta đã có AG là đường trung tuyến của ΔABC

ΔABC cân tại A

Vâỵ để EFKH là hình chữ nhật thì tam giác ABC phải cân tại A.

Kéo dài AG cắt BC tại I

Khi đó SEFKH=EH.EF=12AG.12BC=14.23AI.BC=16AI.BC

Và SABC=BC.AI (vì ta đã CM được AI là đường cao)

SEFKHSABC=16AI.BCBC.AI=16

Vậy SEFKH=16SABC

Những gì mình làm chỉ có vậy thôi chúc bn hc tốt

12 tháng 6 2019

A B C E F K H G

a) E là trung điểm AB, F là trung điểm AC

=> EF là đường trung bình của tam giác ABC 

=> EF//BC

=> EFCB là hình bình hành

b) H là trung điểm BG, K là trung điểm CG

=> HK là đường trung bình của tam giác GBC

=> HK//=\(\frac{1}{2}\)BC

mà  EF//=\(\frac{1}{2}\) BC ( vì  EF là đường trung bình của tam giác ABC )

=> HK//=EF

=> HKEF là hình bình hành

c) Để EFHK là hình chữ nhật

ĐK là HE vuông EF (1)

Vì H là trung điểm BG

E là trung điểm AB

=> HE là đường trung bình BAG

=> EH//AG  (2)

mà EF//BC (3)

1, 2, 3 => AG vuông BC (4) 

Mặt khác G là giao  điểm 2 đường trung tuyến  CE, BFcủa tam giác ABC

=> G là trọng tâm

=> AG là đường trung tuyến  (5)

4, 5 => Tam giác ABC cân tại A

Vậy để EFKH là hình chữ nhật thì tam giác ABC cân tại A

Gọi M là giao điểm của BC

=> Diện tích tam giác ABC :=\(\frac{1}{2}\)AM. BC

Diện tích EFKH := EF.EH=\(\frac{1}{2}\)BC.\(\frac{1}{2}\)AG=\(\frac{1}{2}\)BC. \(\frac{1}{2}\).\(\frac{2}{3}\) AM=\(\frac{1}{6}\)AM.BC =\(\frac{1}{3}\)diện tíc ABC

=> Tự so sánh nhé!

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình

=>EF//BC và EF=BC/2(1)

hay EFCB là hình thang

b: Xét ΔGBC có

K là trung điểm của GB

H là trung điểm của GC

Do đó: KH là đường trung bình

=>KH//BC và KH=BC/2(2)

Từ (1) và (2) suy ra EF=HK và EF=HK

hay EFKH là hình bình hành

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:a) E và F đối xứng qua ABb) MEBF là hình thoic) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.a) chứng minh AH là trục đối xứng...
Đọc tiếp

Bài 1: Cho hbh ABCD. Trên các cạnh AB, CD lần lượt lấy các điểm M, N sao cho AM=DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E, F. Chứng minh rằng:

a) E và F đối xứng qua AB

b) MEBF là hình thoi

c) Hbh ABCD phải có thêm điều kiện gì để BCNE là hình thang cân?

Bài 2: Cho tam giác ABC cân tại A. Đường cao AH và E, M thứ tự là trung điểm AB và AC.

a) chứng minh AH là trục đối xứng của tam giác ABC?

b) các tứ giác EMCB, BEMH, AEHM là hình gì? vì sao?

c) tìm điều kiện tam giác ABC để AEHM là hình vuông?

Trong trường hợp này tính diện tích tam giác BHE. Biết AB=4cm

Bài 3: Gọi E, F lần lượt là trung điểm AB, AC của tam giác ABC.

a) Tứ giác EFCB là hình gì? vì sao?

b) CE và BF cắt nhau tại G. Gọi K, H thứ tự là trung điểm của GC và GB. Chứng minh EFKH là hình bình hành.

c) Tìm điều kiện của tam giác ABC để EFKH là hình chữ nhật.

Khi đó so sánh diện tích EFKH với diện tích tam giác ABC

Vẽ hình và giải giúp mình nha. (bài nào làm được thì làm ạ)

Mình đang cần gấp.

Mơn nhìu~~

 

1
9 tháng 6 2019

1A)  Gọi I là giao điểm của EF và AB                                                                                                                                                                   Vì EF là đường trung trực của MB nên BE=BF                                                                                                                                             xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv)                                                                                                                 IE=IF; EF vuông góc AB  =) E và F đối xứng nhau qua AB nên ta chứng minh  được hai tam giác BEI và BF1 bằng nhau.                   1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB 
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI 
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB 
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi                                                                                                                                                                   1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và CQua I vẽ đường thẳng song song vs AB, cắt AC ở HQua I vẽ đường thẳng song song vs AC, cắt AB ở Ka) Tứ giác AHIK là hình gì?b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là...
Đọc tiếp

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và C

Qua I vẽ đường thẳng song song vs AB, cắt AC ở H

Qua I vẽ đường thẳng song song vs AC, cắt AB ở K

a) Tứ giác AHIK là hình gì?

b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?

c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?

Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng vs D qua AC, F là giao điểm của DN và AC

a) Tứ giác AEDF là hình gì? Vì sao?

b) Các tứ giác ADBM, ADCN là hình gì? Vì sao?

c) CMR: M đối xứng vs N qua A

d) Tam giác vuông ABC có điều kiện gì thì tứ giác ADEF ,là hình vuông

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. gọi D là điểm đối xứng vs H qua AB, gọi E là điểm đx vs H qua Ac

a) CM D đx vs E qua A

b) Tam giác DHE là tam giác gì? Vì sao? 

c) Tứ giác BNEC là hình gì? Vì sao

d) CMR BC= BD+CE

Bài 3: Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm đk của tứ giác ABCD để EFGH là:

a) Hình chứ nhật  ; b) Hình thoi   ; c) hình vuông   

Bài 4: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm GB, K là trung điểm của GC.

a) CMR: Tứ giác DEHK là hbh

b) Tam giác ABC có đk j thì tứ giác DEHK là hcn

c) Nếu các đường trung tuyến BN và CE vuông góc vs nhau thì tứ giác DEHK là hình j?

0
8 tháng 3 2020

Hỏi đáp Toán

a)

ta có G là trọng tâm của tam giác ABC.

\(\hept{\begin{cases}\Rightarrow BH=GH=GD\\\Rightarrow EG=GK=KC\end{cases}}\)

hay G là trung điểm của EK và HD.

tứ giác EDKH có 2 đường chéo cắt nhau tại trung điểm mỗi đường

do đó tứ giác EDKH là hình bình hành.

b) để hình bình hành EDKH là hình chữ nhật thì EK=HD

⇒BD=EC⇒­ΔABC­cân

vậy để hình bình hành EDKH là hình chữ nhật thì tam giác ABC cân

c) vẽ đường cao AI vuông góc với BC.

khi đó AI cũng là đường trung tuyến.

\(\Rightarrow AG=\frac{2}{3}AI\)

ta có :\(\hept{\begin{cases}BE=AE\\AD=DC\end{cases}}\) nên ED là đường trung bình của tam giác ABC.

\(\hept{\begin{cases}ED//BC\\2ED=BC\end{cases}}\)

vì ED//BC và AI⊥BC nên ED⊥AI

đồng thời EH⊥ED nên EH//AI.

ta có: \(\hept{\begin{cases}EH//AI\\BE=EA\end{cases}}\)\(\Rightarrow AH=\frac{AG}{2}\)

hay \(EH=\frac{\frac{2}{3}AI}{2}=\frac{1}{3}AI\Leftrightarrow3EH=AI\)

\(S\Delta ABC=\frac{AI.BC}{2}=\frac{3EH.2ED}{2}=3EH.ED\)=\(3S_{EDHK}\)

vậy\(\frac{S_{EDHK}}{S_{\Delta ABC}}=\frac{1}{3}\)

CHÚC BẠN HỌC TỐT

22 tháng 12 2021
xin lũi câu tính S mìnk khum làm đc :Đ
22 tháng 12 2021

ABCHEDF----------

a) Vì E là trung điểm AC; D trung điểm AB (gt)

=> ED là đường tb của tam giác ABC

=> ED//CB;ED=1/2CB

Mà F là trung điểm BC (gt)=>FB=FC=1/2BC

Do đó: ED//FB;ED=1/2FB

Nên tứ giác BDEF là hbh (2 cạnh đối // và = nhau)

b) Nối H với D ta có:

Xét tam giác vuông ABC có DA=DB=1/2AB (D trung đ AB)

=> HD là đường trung tuyến của tam giác ABC (đg trung tuyến ứng vs cạnh huyền)

=>HD=1/2AB

Nên: HD=DB (1)

gọi I nằm giữa D và F

Vì AC//DF và DF=1/2 AC (DF là đg tb;cmt)

=>AE=DF;AE//DF

=>AEFD là hbh (2 cạnh đối // và =nhau)

Mà H thuộc AE thuộc D và I thuộc DF

=> HE//DF=> HEFD là hình thang 

Lại có: đường cao BH=> ^BHC=90o

=> HEFD là hình thang cân

=> ^AEF=90o

=>AEFD là hcn (hbh có 1 góc _|_)

=> ^DFE=90(2)

Từ (1) và (2)=> DF là đường trung trực của ^HDB

=> I trung điểm HB

Nên:H và B đối xứng với nhau qua DF (đpcm)

c) Để BDEF là hcn => hbh BDEF có 1 góc vuông 

=> ^FEC=90o

Mà EA=EC

=>FE là đường trung tuyến của cạnh AC

=>EA=EC=1/2AC

Do đó FD cũng là đường trung tuyến cạnh AB

=>DA=DB=1/2AB

Nên: AC=AB

=> tam giác ABC là tam giác cân tại A

Vậy tam giác ABC là tam giác cân tại A thì BDEF là hcn.